K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 9 2015

x=0 hoặc x=4                

23 tháng 9 2015

=>\(\sqrt{x}\).(\(\sqrt{x}\)-2)=0

=>\(\sqrt{x}\)=0 hoặc \(\sqrt{x}\)-2=0

=>x=0 hoặc x=4 (tắt tí)

21 tháng 9 2017

a) \(\sqrt{x^2-9}-3\sqrt{x-3}=0\)(ĐKXĐ: \(x\ge\pm3\)

\(\Leftrightarrow\sqrt{\left(x-3\right)\left(x+3\right)}-3\sqrt{x-3}=0\)

\(\Leftrightarrow\sqrt{x-3}\left(\sqrt{x+3}-3\right)=0\)

\(\left[{}\begin{matrix}\sqrt{x-3}=0\\\sqrt{x+3}-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=6\end{matrix}\right.\)(TM)

b)\(\sqrt{x^2-4}-2\sqrt{x+2}=0\)

ĐKXĐ: \(x\ge\pm2\)

\(\Leftrightarrow\sqrt{x-2}.\sqrt{x+2}-2\sqrt{x+2}=0\)

\(\Leftrightarrow\sqrt{x+2}\left(\sqrt{x-2}-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+2}=0\\\sqrt{x-2}-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\left(ktm\right)\\x=6\left(tm\right)\end{matrix}\right.\)

22 tháng 11 2021

\(a,P=\left[\dfrac{\left(1-\sqrt{x}\right)\left(x+\sqrt{x}+1\right)}{1-\sqrt{x}}+\sqrt{x}\right]\left[\dfrac{\left(1+\sqrt{x}\right)\left(x-\sqrt{x}+1\right)}{1+\sqrt{x}}-\sqrt{x}\right]\\ P=\left(x+2\sqrt{x}+1\right)\left(x-2\sqrt{x}+1\right)\\ P=\left(\sqrt{x}-1\right)^2\left(\sqrt{x}+1\right)^2\\ P=\left(x-1\right)^2\\ b,x=\sqrt{3+2\sqrt{2}}=\sqrt{\left(\sqrt{2}+1\right)^2}=\sqrt{2}+1\\ \Leftrightarrow P=\left(\sqrt{2}+1-1\right)^2=\left(\sqrt{2}\right)^2=2\)

22 tháng 11 2021

a) \(P=\left(\dfrac{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}+x\right)}{1-\sqrt{x}}+\sqrt{x}\right)\left(\dfrac{\left(1+\sqrt{x}\right)\left(1-\sqrt{x}+x\right)}{1+\sqrt{x}}-\sqrt{x}\right)\)

\(=\left(x+2\sqrt{x}+1\right)\left(x-2\sqrt{x}+1\right)=\left[\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\right]^2=\left(x-1\right)^2\)

\(P=\left(x-1\right)^2=\left(\sqrt{\left(\sqrt{2}+1\right)^2}-1\right)^2=\left(\sqrt{2}\right)^2=2\)

10 tháng 11 2023

a: A<1

=>A-1<0

=>\(\dfrac{\sqrt{x}+1-\sqrt{x}+3}{\sqrt{x}-3}< 0\)

=>\(\dfrac{4}{\sqrt{x}-3}< 0\)

=>\(\sqrt{x}-3< 0\)

=>\(\sqrt{x}< 3\)

=>0<=x<9

b: Để A<=2 thì A-2<=0

=>\(\dfrac{\sqrt{x}+1-2\sqrt{x}+6}{\sqrt{x}-3}< =0\)

=>\(\dfrac{-\sqrt{x}+7}{\sqrt{x}-3}< =0\)

=>\(\dfrac{\sqrt{x}-7}{\sqrt{x}-3}>=0\)

TH1: \(\left\{{}\begin{matrix}\sqrt{x}-7>=0\\\sqrt{x}-3>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\sqrt{x}>=7\\\sqrt{x}>3\end{matrix}\right.\)

=>\(\sqrt{x}>=7\)

=>x>=49

TH2: \(\left\{{}\begin{matrix}\sqrt{x}-7< =0\\\sqrt{x}-3< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\sqrt{x}< =7\\\sqrt{x}< 3\end{matrix}\right.\)

=>\(\sqrt{x}< 3\)

=>0<=x<9

DT
16 tháng 6 2023

\(\left(a\right):2x-7\sqrt{x}+3=0\left(x\ge0\right)\\ < =>\left(2x-6\sqrt{x}\right)-\left(\sqrt{x}-3\right)=0\\ < =>2\sqrt{x}\left(\sqrt{x}-3\right)-\left(\sqrt{x}-3\right)=0\\ < =>\left(2\sqrt{x}-1\right)\left(\sqrt{x}-3\right)=0\\ =>\left[{}\begin{matrix}2\sqrt{x}-1=0\\\sqrt{x}-3=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=\dfrac{1}{4}\left(TM\right)\\x=9\left(TM\right)\end{matrix}\right.\)

\(\left(b\right):3\sqrt{x}+5< 6\\ < =>3\sqrt{x}< 1\\ < =>\sqrt{x}< \dfrac{1}{3}\\ < =>0\le x< \dfrac{1}{9}\)

\(\left(c\right):x-3\sqrt{x}-10< 0\\ < =>\left(x-5\sqrt{x}\right)+\left(2\sqrt{x}-10\right)< 0\\ < =>\sqrt{x}\left(\sqrt{x}-5\right)+2\left(\sqrt{x}-5\right)< 0\\ < =>\left(\sqrt{x}-5\right)\left(\sqrt{x}+2\right)< 0\\ =>\left\{{}\begin{matrix}\sqrt{x}-5< 0\\\sqrt{x}+2>0\end{matrix}\right.\\ < =>\left\{{}\begin{matrix}0\le x< 25\\x\ge0\end{matrix}\right.< =>0\le x< 25\)

\(\left(d\right):x-5\sqrt{x}+6=0\left(x\ge0\right)\\ < =>\left(x-2\sqrt{x}\right)-\left(3\sqrt{x}-6\right)=0\\ < =>\sqrt{x}\left(\sqrt{x}-2\right)-3\left(\sqrt{x}-2\right)=0\\ < =>\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)=0\\ =>\left[{}\begin{matrix}\sqrt{x}-3=0\\\sqrt{x}-2=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=9\\x=4\end{matrix}\right.\left(TM\right)\)

\(\left(e\right):x+5\sqrt{x}-14< 0\\ < =>\left(x+7\sqrt{x}\right)-\left(2\sqrt{x}+14\right)< 0\\ < =>\sqrt{x}\left(\sqrt{x}+7\right)-2\left(\sqrt{x}+7\right)< 0\\ < =>\left(\sqrt{x}-2\right)\left(\sqrt{x}+7\right)< 0\\ =>\left\{{}\begin{matrix}\sqrt{x}+7>0\\\sqrt{x}-2< 0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x\ge0\\0\le x< 4\end{matrix}\right.< =>0\le x< 4\)

3 tháng 8 2016

a)\(\sqrt{x^2+x+\frac{1}{4}}-\sqrt{4-2\sqrt{3}}=0\)

\(\Leftrightarrow\sqrt{\left(x+\frac{1}{2}\right)^2}-\sqrt{\left(\sqrt{3}-1\right)^2}=0\)

\(\Leftrightarrow x+\frac{1}{2}-\sqrt{3}+1=0\)

\(\Leftrightarrow x=\sqrt{3}-1-\frac{1}{2}\)

\(\Leftrightarrow x=\sqrt{3}-\frac{3}{2}\)

b)\(x-5\sqrt{x}+6=0\)

\(\Leftrightarrow x-2\sqrt{x}-3\sqrt{x}+6=0\)

\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-2\right)-3\left(\sqrt{x}-2\right)=0\)

\(\Leftrightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}\sqrt{x}-2=0\\\sqrt{x}-3=0\end{array}\right.\) \(\Leftrightarrow\left[\begin{array}{nghiempt}\sqrt{x}=2\\\sqrt{x}=3\end{array}\right.\) \(\Leftrightarrow\left[\begin{array}{nghiempt}x=4\\x=9\end{array}\right.\)

31 tháng 10 2021

\(1,\\ a,ĐK:\left\{{}\begin{matrix}x\ge0\\x+5\ge0\end{matrix}\right.\Leftrightarrow x\ge0\\ b,Sửa:B=\left(\sqrt{3}-1\right)^2+\dfrac{24-2\sqrt{3}}{\sqrt{2}-1}\\ B=4-2\sqrt{3}+\dfrac{2\sqrt{3}\left(\sqrt{2}-1\right)}{\sqrt{2}-1}\\ B=4-2\sqrt{3}+2\sqrt{3}=4\\ 3,\\ =\left[1-\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{1+\sqrt{x}}\right]\cdot\dfrac{\sqrt{x}-3+2-2\sqrt{x}}{\left(1-\sqrt{x}\right)\left(\sqrt{x}-3\right)}-2\\ =\left(1-\sqrt{x}\right)\cdot\dfrac{-\sqrt{x}-1}{\left(1-\sqrt{x}\right)\left(\sqrt{x}-3\right)}-2\\ =\dfrac{-\sqrt{x}-1}{\sqrt{x}-3}-2=\dfrac{-\sqrt{x}-1-2\sqrt{x}+6}{\sqrt{x}-3}=\dfrac{-3\sqrt{x}+5}{\sqrt{x}-3}\)