Cho phương trình \(cos\left(x-\dfrac{\pi}{3}\right)-sin\left(2x+\dfrac{\pi}{2}\right)=0\). Có hai bạn giải được hai đáp án sau:
\(I.\left[{}\begin{matrix}x=\dfrac{\pi}{9}+l2\pi\\x=-\dfrac{\pi}{3}+k2\pi\end{matrix}\right.II.\left[{}\begin{matrix}x=\dfrac{\pi}{9}+l\dfrac{2\pi}{3}\\x=-\dfrac{\pi}{3}-k2\pi\end{matrix}\right.\)
A. I, II cùng sai
B. Chỉ I đúng
C. Chỉ II đúng
D. I, II cùng đúng
\(cos\left(x-\dfrac{\pi}{3}\right)=sin\left(2x+\dfrac{\pi}{2}\right)\)
\(\Leftrightarrow cos\left(x-\dfrac{\pi}{3}\right)=cos2x\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=x-\dfrac{\pi}{3}+k2\pi\\2x=\dfrac{\pi}{3}-x+l2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{3}+k2\pi\\x=\dfrac{\pi}{9}+l\dfrac{2\pi}{3}\end{matrix}\right.\)
Chỉ II đúng