Cho phân số \(\dfrac{a}{b}\) tối giản . Chứng minh : \(\dfrac{a+b}{b}\) cũng tối giản ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/
Gọi $d=ƯCLN(n+1, 2n+3)$
$\Rightarrow n+1\vdots d; 2n+3\vdots d$
$\Rightarrow 2n+3-2(n+1)\vdots d$
$\Rightarrow 1\vdots d$
$\Rightarrow d=1$
Vậy $\frac{n+1}{2n+3}$ là phân số tối giản với mọi số tự nhiên $n$
b/
Cho $a=2, b=2$ thì phân số đã cho bằng $\frac{24}{26}$ không là phân số tối giản bạn nhé.
Bạn xem lại đề.
Bài giải
Ta có: \(\frac{a}{b}\)(a, b \(\inℕ^∗\)) là phân số tối giản
Suy ra ƯCLN (a, b) = 1
Gọi ƯCLN (a, b) là d
Ta có: a \(⋮\)d; b\(⋮\)d; d = 1
Suy ra b - a \(⋮\)d và b \(⋮\)d
Mà d = 1 (d là ƯCLN (a, b)
Nên \(\frac{b-a}{b}\)cũng là phân số tối giản.
Vậy...
\(\frac{a-2b}{b}=\frac{a-b+b}{b}=\frac{a}{b}\)là phân số tối giản.
Thế thôi ! Bạn chỉ cần tách tử số là ra luôn !^^
Gọi \(A=\dfrac{b}{a-b}\)
\(\Rightarrow\dfrac{1}{A}=\dfrac{a-b}{b}=\dfrac{a}{b}-1\)
Ta có nếu A là số tối giản thì \(\dfrac{1}{A}\)cũng là số tối giản và ngược lại
Mà \(\dfrac{a}{b}\);1 là các số tối giản nên \(\dfrac{1}{A}\) là số tối giản
Hay \(\dfrac{b}{a-b}\) là số tối giản
a) Các phân số tối giản là: \(\dfrac{1}{5};\dfrac{7}{6};\dfrac{9}{19}\)
b) Ba phân số tối giản là: \(\dfrac{3}{2};\dfrac{5}{6};\dfrac{4}{9}\)
Ba phân số chưa tối giản là:
\(\dfrac{10}{18}=\dfrac{10:2}{18:2}=\dfrac{5}{9}\)
\(\dfrac{20}{50}=\dfrac{20:10}{50:10}=\dfrac{2}{5}\)
\(\dfrac{3}{12}=\dfrac{3:3}{12:3}=\dfrac{1}{4}\)
Gọi ƯCLN(b,a+b)=d(a,a+b)=d (d ∈∈N*)
⇒⇒ b ⋮d ; a+b ⋮d
⇒⇒ b ⋮d ; a⋮d
Vì \(\dfrac{a}{b}\)tối giản nên ⇒⇒ d= 1
Vậy nếu \(\dfrac{a}{b}\) tối giản thì \(\dfrac{a+b}{b}\) tối giản