Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi ƯCLN(b,a+b)=d(a,a+b)=d (d ∈∈N*)
⇒⇒ b ⋮d ; a+b ⋮d
⇒⇒ b ⋮d ; a⋮d
Vì \(\dfrac{a}{b}\)tối giản nên ⇒⇒ d= 1
Vậy nếu \(\dfrac{a}{b}\) tối giản thì \(\dfrac{a+b}{b}\) tối giản
a, \(\frac{n+3}{n+3}=1\) mà \(n\in Z\) nên \(\frac{n+3}{n+3}=\pm1\)
=> n + 3/n+ 3 là PSTG
a/(a+b)=a/a+a/b=1+a/b
1 cộng với p/s tối giản vẫn là ps tối giản
Gọi d=UCLN(a,a+b);
=> a chia hết cho d
a+b chia hết cho d
=>a chia hết cho d
b chia hết cho d
Mà phấn số a,b tối giản =>UCLN(a,b)=1;
=>d=1;
=>UCLN(a,a+b)=1
=>a/a+b là p/s tối giản
Chúc bạn hok tốt!
nếu \(\frac{a}{b}\) là phân số tối giản thì \(\frac{a}{a+b}\) là phân số tối giản.
VD:\(\frac{1}{2}\rightarrow\frac{1}{1+2}=\frac{1}{3}\)
\(\frac{1}{3}\rightarrow\frac{1}{1+3}=\frac{1}{4}\)
....................................
Gọi ƯCLN\(\left(12n+1;30n+2\right)=d\)
\(\Rightarrow\left\{{}\begin{matrix}\left(12n+1\right)⋮d\\\left(30n+2\right)⋮d\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left(60n+5\right)⋮d\\\left(60n+4\right)⋮d\end{matrix}\right.\)
\(\Rightarrow\left(60n+5\right)-\left(60n+4\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d\inƯ\left(1\right)\)
\(\Rightarrow d=1\)
Vì d = 1 \(\Rightarrow\dfrac{12n+1}{30n+2}\) là phân số tối giản.
Gọi \(A=\dfrac{b}{a-b}\)
\(\Rightarrow\dfrac{1}{A}=\dfrac{a-b}{b}=\dfrac{a}{b}-1\)
Ta có nếu A là số tối giản thì \(\dfrac{1}{A}\)cũng là số tối giản và ngược lại
Mà \(\dfrac{a}{b}\);1 là các số tối giản nên \(\dfrac{1}{A}\) là số tối giản
Hay \(\dfrac{b}{a-b}\) là số tối giản