cho tam giác abc vuông tại b phân giác ad .Từ c vẽ đường thẳng vuông goc với bc cắt tia ad tại e
CMR tam giác ecb lớn hơn chu vi tam giác abdHãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có: AB // CE ( cùng vuông góc với BC)
=> BAD = CED (so le trong)
= DAC
=> t/g ACE cân tại C => AC = CE
T/g ABC vuông tại B => AC > AB (trong t/g vuông cạnh huyền lớn nhất)
=> CE > AB (1)
ADC là góc ngoài của t/g ABD => ADC > ABD = 90o
T/g ADC có ADC tù => AC > AD
hay CD > AD
Mà DE > CD do t/g DCE vuông tại C (gt)
=> DE > AD (2)
Từ D kẻ DH _|_ AC
T/g ABD = t/g AHD ( cạnh huyền - góc nhọn)
=> BD = DH (2 cạnh t/ư)
T/g DHC vuông tại H => DC > DH (...)
hay DC > BD (3)
Từ (1);(2);(3) => Chu vi t/g ECD > chi vi t/g ABD (ĐPCM)
Bài 1:
a)+ Vì AB = ACNÊN
==>Tam giác ABC cân tại A
==>góc ABI = góc ACI
+ Xét tam giác ABI và tam giác ACI có:
AI là cạch chung
AB = AC(gt)
BI = IC ( I là trung điểm của BC)
Vậy tam giác ABI = tam giác ACI (c.c.c)
==> góc BAI = góc CAI ( 2 góc tương ứng )
==>AI là tia phân giác của góc BAC
b)
Xét tam giác BAM và tam giác BAN có:
AB = AC (gt)
góc B = góc C (cmt)
BM = CN ( gt )
Vậy tam giác BAM = tam giác CAN (c.g.c)
==> AM = AN (2 cạnh tương ứng)
c)
vì tam giác BAI = tam giác CAI (cmt)
==>góc AIB = góc AIC (2 góc tương ứng)
Mà góc AIB+ góc AIC = 180độ ( kề bù)
nên AIB=AIC=180:2=90
==>AI vuông góc với BC
a) Xét ΔABC có AB<AC(6cm<8cm)
mà góc đối diện với cạnh AB là \(\widehat{ACB}\)
và góc đối diện với cạnh AC là \(\widehat{ABC}\)
nên \(\widehat{ABC}>\widehat{ACB}\)(Định lí quan hệ giữa cạnh và góc đối diện trong tam giác)
b) Xét ΔABD vuông tại A và ΔHBD vuông tại H có
BD chung
BA=BH(gt)
Do đó: ΔABD=ΔHBD(cạnh huyền-cạnh góc vuông)
nên \(\widehat{ABD}=\widehat{HBD}\)(hai góc tương ứng)
mà tia BD nằm giữa hai tia BA,BH
nên BD là tia phân giác của \(\widehat{ABH}\)
hay BD là tia phân giác của \(\widehat{ABC}\)(đpcm)
bạn kẻ được hình của cả 2 bài rồi đúng ko. mình chỉ trả lời câu hỏi chứ ko vẽ hình đâu bạn nha
Bài 1:
a) xét tam giác ABE và tam giác DBE có: góc BAE = góc BDE (= 90o) ; cạnh BE chung; góc ABE = góc DBE ( do BE là phân giác của góc B)
=> tam giác ABE = tam giác DBE ( trường hợp cạnh huyền góc nhọn)
b) Do tam giác ABE = tam giác DBE ( chứng minh câu a) => AB = BD và AE = ED ( cặp cạnh tương ứng) => BE là trung trực của AD
c) xét tam giác AEF và tam giác DEC có: AE = DE ( c/m câu b); góc AEF = góc DEC ( đối đỉnh); góc FAE = góc EDC (=90o)
=> tam giác AEF = tam giác DEC ( trường hợp g.c.g ) => AE = DC (1)
mặt khác, AB = BD ( c/m câu b) (2) => tam giác ABD cân tại B => góc BDA = góc B :2 (3)
từ (1) và (2) => AB + AE = BD + DC hay BE = BC => tam giác BEC cân tại B => góc BCE = góc B : 2 (4)
từ (3) và (4) => góc BDA = góc BCE mà 2 góc này ở vị trí đồng vị so với DC nên AD // FC
Bài 2:
a) xét tam giác ABD và tam giác HBD có: góc BAD = góc BHD (= 90o) ; cạnh BD chung; góc ABD = góc HDB ( do BD là phân giác của góc B) => tam giác ABD = tam giác HBD => AD = DH ( cặp cạnh tương ứng)
b) do AD = DH ( c/m câu a) (1)
xét tam giác DHC có góc DHC = 90o => DH < DC ( quan hệ đường vuông góc với đường xiên) (2)
từ (1) và (2) => AD < DC
c) xét tam giác ADK và tam giác HDC có: AD = DH ( c/m câu a); góc ADK = góc HDC ( đối đỉnh); góc DAK = góc DHC (=90o)
=> tam giác ADK = tam giác HDC ( trường hợp g.c.g ) => AK = HC (3)
mặt khác, AB = BH ( do tam giác ABD = tam giác HBD) (4)
từ (1) và (2) => AB + AK = BH + HC hay BK = BC => tam giác BEC cân tại B
Xong rồi nha :)