K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 3 2017

Áp dụng định lý Bơ-du:

Thay\(f\left(1\right)\) vào \(f\left(x\right)\),ta được:

\(1^{81}-45.1^{37}+2061=1-45+2061=2017\)

Vậy số dư là 2017

Chúc bạn học tốtvui

5 tháng 3 2017

2017

2 tháng 5 2017

đúng đó

5 tháng 3 2017

2017, Violympic Toán 8

2 tháng 5 2019

21 tháng 2 2017

12 tháng 8 2022

bạn cho mình biết cách mà bạn tìm ra a đc ko 

Gọi thương của P(x) khi chi cho (x-2), (x-3) lần lượt là A(x),B(x)               =>P(x)=(x-2).A(x)+5  (1)      và P(x)=(x-3).B(x)=7 (2)                               Gọi thương của P(x) khi chia cho (x-2).(x-3) là C(x) và dư là R(x)           Ta có : (x-2)(x-3) có bậc là 2 =>  R(x) có bậc là 1 => R(x) có dạng ax+b  (a,b là số nguyên )                                                             =>R(x)=(x-2)(x-3).C(x)+ax+b  (3)                                                         thay x=2 vào (1) và (3) ta có: P(x)=2a+b=5                                            thay x=3 vào (2) và (3) ta có: P(x)=3a+b=7                                         => a=2,b=1 =>R(x)=2x+1                                                                      Vậy dư của P(x) khi chia cho (x-2)(x-3) là 2x+1

24 tháng 2 2021

Vì \(f\left(x\right)⋮x-2;f\left(x\right):x^2-1\) dư 1\(\Rightarrow\left\{{}\begin{matrix}f\left(x\right)=g\left(x\right)\cdot\left(x-2\right)\\f\left(x\right)=q\left(x\right)\left(x^2-1\right)+x=q\left(x\right)\left(x-1\right)\left(x+1\right)+x\end{matrix}\right.\) 

\(\Rightarrow\left\{{}\begin{matrix}f\left(2\right)=0\\f\left(1\right)=1\\f\left(-1\right)=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}32+4a+2b+c=0\\2+a+b+c=1\\2+a-b+c=-1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}4a+2b+c=-32\left(1\right)\\a+b+c=-1\left(2\right)\\a-b+c=-3\left(3\right)\end{matrix}\right.\)

 Trừ từng vế của (2) cho (3) ta được:

\(\Rightarrow2b=2\Rightarrow b=1\)

Thay b=1 vào lần lượt (1) ,(2),(3) ta được:

\(\Rightarrow\left\{{}\begin{matrix}4a+2+c=-32\\a+1+c=-1\\a-1+c=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4a+c=-34\\a+c=-2\\a+c=-2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}4a+c=-34\left(4\right)\\a+c=-2\left(5\right)\end{matrix}\right.\)

Trừ từng vế của (4) cho (5) ta được:

\(\Rightarrow3a=-32\Rightarrow a=-\dfrac{32}{3}\Rightarrow c=-2+\dfrac{32}{3}=\dfrac{26}{3}\) Vậy...