số dư của S = 7+\(7^2+7^{3^{ }^{ }}+...+7^{36}\)chia cho 8
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 7.(1 + 7) + 73.(1 + 7) + ... + 735.(1 + 7)
= 7.8 + 73.8 + ... + 735.8
= 8.(7 + 73 + ... + 735) chia hết cho 8
=> A chia 8 dư 0.
E=7+7^2+...+7^36
=(7+7^2)+...+(7^35+7^36)
=7.(1+7)+...+7^35.(1+7)
=7.8+...+7^35.8
=8(7+7^3+...+7^35)
Suy ra E chia het cho 8
Vậy số dư của E khi chia cho 8 dư 0
Dư 0
Học lớp 5 thì ghi chi cho mệt lấy k à, không biết làm nói đại đi còn bày đặt lười đánh máy
8 do dung 100000000000000000000000000000000000000000000000000000000000000000000000%
\(E=\left(7+7^2\right)+\left(7^3+7^4\right)+...+\left(7^{35}+7^{36}\right)\)
\(=7.\left(1+7\right)+7^3.\left(1+7\right)+...+7^{35}.\left(1+7\right)\)
\(=7.8+7^3.8+...+7^{35}.8\)
\(=8.\left(7+7^3+...+7^{35}\right)\text{ chia hết cho 8}\)
=> E chia hết cho 8
=> Số dư khi chia E cho 8 là 0.
E = \(7+7^2+7^3+....+7^{36}\)
\(=\left(7+7^2\right)+\left(7^3+7^4\right)+....+\left(7^{35}+7^{36}\right)\)
\(=\left(7.1+7.7\right)+\left(7^3.1+7^3.7\right)+....+\left(7^{35}.1+7^{35}.7\right)\)
\(=7.\left(1+7\right)+7^3.\left(1+7\right)+....+7^{35}.\left(1+7\right)\)
\(=7.8+7^3.8+....+7^{35}.8\)
\(=8.\left(7+7^3+...+7^{35}\right)\)
Vậy E chia hết cho 8
=> E chia 8 dư 0
ghép 2 số với nhau rồi lấy 1 số chung ra ngoài.trong ngoặc còn (1+7)=8
mỗi cặp số đều như thế thì chia hết cho 8 nên chia 8 dư 0
\(S=7+7^2+7^3+...+7^{36}\)
\(S=7\left(1+7\right)+7^3\left(1+7\right)+....+7^{35}\left(1+7\right)\)
\(S=7.8+7^3.8+....+7^{35}.8\)
\(S=8.\left(7+7^3+...+7^{35}\right)\)
\(\Rightarrow\) Số dư của S khi chia cho 8 là 0
nếu là cm chia cho 8 thì là: vì S.8\(\Rightarrow\) S chia hết cho 8