Tìm GTNN :
\(D=x^4-2x^3+3x^2-2x+1\)
\(E=x^4-6x^3+10x-6x+9\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`@` `\text {Ans}`
`\downarrow`
`a)`
`3x(4x-1) - 2x(6x-3) = 30`
`=> 12x^2 - 3x - 12x^2 + 6x = 30`
`=> 3x = 30`
`=> x = 30 \div 3`
`=> x=10`
Vậy, `x=10`
`b)`
`2x(3-2x) + 2x(2x-1) = 15`
`=> 6x- 4x^2 + 4x^2 - 2x = 15`
`=> 4x = 15`
`=> x = 15/4`
Vậy, `x=15/4`
`c)`
`(5x-2)(4x-1) + (10x+3)(2x-1) = 1`
`=> 5x(4x-1) - 2(4x-1) + 10x(2x-1) + 3(2x-1)=1`
`=> 20x^2-5x - 8x + 2 + 20x^2 - 10x +6x - 3 =1`
`=> 40x^2 -17x - 1 = 1`
`d)`
`(x+2)(x+2)-(x-3)(x+1)=9`
`=> x^2 + 2x + 2x + 4 - x^2 - x + 3x + 3=9`
`=> 6x + 7 =9`
`=> 6x = 2`
`=> x=2/6 =1/3`
Vậy, `x=1/3`
`e)`
`(4x+1)(6x-3) = 7 + (3x-2)(8x+9)`
`=> 24x^2 - 12x + 6x - 3 = 7 + (3x-2)(8x+9)`
`=> 24x^2 - 12x + 6x - 3 = 7 + 24x^2 +11x - 18`
`=> 24x^2 - 6x - 3 = 24x^2 + 18x -11`
`=> 24x^2 - 6x - 3 - 24x^2 + 18x + 11 = 0`
`=> 12x +8 = 0`
`=> 12x = -8`
`=> x= -8/12 = -2/3`
Vậy, `x=-2/3`
`g)`
`(10x+2)(4x- 1)- (8x -3)(5x+2) =14`
`=> 40x^2 - 10x + 8x - 2 - 40x^2 - 16x + 15x + 6 = 14`
`=> -3x + 4 =14`
`=> -3x = 10`
`=> x= - 10/3`
Vậy, `x=-10/3`
TL:
\(B=2x^2+y^2-2xy-2x+3\)
\(=\left(x^2-2xy+y^2\right)+(x^2-2x+1)+2\)
\(=\left(x-y\right)^2+\left(x-1\right)^2+2\ge2\forall x;y\)
\(D=\left(x+8\right)^4+\left(x+6\right)^4\ge0\forall x\)
Dấu"=" xảy ra<=> \(\hept{\begin{cases}\left(x+8\right)^4=0\\\left(x+6\right)^4=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=-8\\x=-6\end{cases}}\)
một đòn bẫy dài một mét .đặt ở đâu để có thể dùng 3600n có thể nâng tảng đá nặng 120kg?
\(D=\left(x^4-2x^3+x^2\right)+\left(2x^2-2x+1\right)\)
\(D=\left(x^2-x\right)^2+2\left(x^2-x\right)+1=\left(x^2-x+1\right)^2\)
\(D=\left[\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right]^2\)
\(\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\in R\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
\(\Rightarrow D\ge\left(\dfrac{3}{4}\right)^2=\dfrac{9}{16}\)
đẳng thúc khi x=1/2
{logic 10x-->10x^2}
\(E=x^4-6x^3+10x^2-6x+9\)
\(E=\left(x^4-3x+9x^2\right)+\left(x^2-6x+9\right)\)
\(E=\left(x^2-3x\right)^2+\left(x-3\right)^2=\left[x^2\left(x-3\right)^2\right]+\left(x-3\right)^2\)
\(E=\left(x-3\right)^2\left(x^2+1\right)\)
\(\left\{{}\begin{matrix}\left(x-3\right)^2\ge0\\\left(x^2+1\right)\ge1\end{matrix}\right.\) \(\Rightarrow E\ge0\) đẳng thức khi x=3