Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
một đòn bẫy dài một mét .đặt ở đâu để có thể dùng 3600n có thể nâng tảng đá nặng 120kg?
b)Ta có:\(B=\left(0,5x^2+x\right)^2-3\left|0,5x^2+x\right|\)
\(B=\left|0,5x^2+x\right|^2-3\left|0,5x^2+x\right|+\dfrac{9}{4}-\dfrac{9}{4}\)
\(B=\left(\left|0,5x^2+x\right|-\dfrac{3}{2}\right)^2-\dfrac{9}{4}\ge-\dfrac{9}{4}\)
"="<=>\(\left|0,5x^2+x\right|=\dfrac{3}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)
g)Ta có:\(G=\left(x^2+x-6\right)\left(x^2+x+2\right)\)
Đặt \(x^2+x-2=t\)
\(\Rightarrow G=\left(t-4\right)\left(t+4\right)\)
\(G=t^2-16\ge-16\)
"="<=>\(x^2+x-2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
E=\(x^4-6x^3+9x^2+x^2-6x+9\)
\(=x^2\left(x^2-6x+9\right)+x^2-6x+9\\ =x^2\left(x-3\right)^2+\left(x-3\right)^2\ge0\forall x\\ E_{min}=0\Leftrightarrow x=3\)
\(D=\left(x^4-2x^3+x^2\right)+\left(2x^2-2x+1\right)\)
\(D=\left(x^2-x\right)^2+2\left(x^2-x\right)+1=\left(x^2-x+1\right)^2\)
\(D=\left[\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right]^2\)
\(\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\in R\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
\(\Rightarrow D\ge\left(\dfrac{3}{4}\right)^2=\dfrac{9}{16}\)
đẳng thúc khi x=1/2
{logic 10x-->10x^2}
\(E=x^4-6x^3+10x^2-6x+9\)
\(E=\left(x^4-3x+9x^2\right)+\left(x^2-6x+9\right)\)
\(E=\left(x^2-3x\right)^2+\left(x-3\right)^2=\left[x^2\left(x-3\right)^2\right]+\left(x-3\right)^2\)
\(E=\left(x-3\right)^2\left(x^2+1\right)\)
\(\left\{{}\begin{matrix}\left(x-3\right)^2\ge0\\\left(x^2+1\right)\ge1\end{matrix}\right.\) \(\Rightarrow E\ge0\) đẳng thức khi x=3