Tìm x : (x > 0)
x^2 + (2x)^2 + (3x)^2 + (4x)^2 + (5x)^2 = 220
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x2 + (2x)2 + (3x)2 + (4x)2 + (5x)2 = 220
<=> x2 + 22.x2 + 32.x2 + 42.x2 + 52.x2 = 220
<=> x2 ( 1 + 22 + 32 + 42 + 52 ) = 220
<=> x2.( 1 + 4 + 9 + 16 + 25 ) = 220
<=> 55x2 = 220
=> x2 = 4
=> x = 2 ( vì x > 0 )
Vậy x = 2
=\(x^2+4x^2+9x^2+16x^2+25x^2=220\)0
\(\Rightarrow55x^2=220\Rightarrow x^2=4\Rightarrow x=\orbr{\begin{cases}2\\-2\end{cases}}\)
=>x^2(1+4+9+16+25)=220
=> x^2.55=220
=> x^2=4
=>x=2 hoặc x= -2
x2+(2x)2+(3x)2+(4x)2+(5x)2 = 220
=> x2+22.x2+32.x2+42.x2+52.x2 =220
=> x2 (1+4+9+16+25) = 220
=> x2 . 55 = 220
=> x2 = 220:55 = 4 = 22 = (-2)2
Vi x>0 nen x= 2
a) 3x(4x-3)-2x(5-6x)=0
\(\Leftrightarrow12x^2-9x-10x+12x^2=0\)
\(\Leftrightarrow24x^2-19x=0\)
\(\Leftrightarrow x\left(24x-19\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\24x-19=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\24x=19\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{19}{24}\end{matrix}\right.\)
Vậy x=0 hoặc x=\(\dfrac{19}{24}\)
a) 3x(4x - 3) - 2x(5 - 6x) = 0
=> 6x2 - 9x - 10x + 12x2 = 0
=> 18x2 - 19x = 0
=> x(18x - 19) = 0
=> \(\orbr{\begin{cases}x=0\\18x-19=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=0\\x=\frac{19}{18}\end{cases}}\)
b) 5(2x - 3) + 4x(x - 2) + 2x(3 - 2x) = 0
=> 10x - 15 + 4x2 - 8x + 6x - 4x2 = 0
=> 8x - 15 = 0
=> 8x = 15
=> x = 15 : 8 = 15/8
c) 3x(2 - x) + 2x(x - 1) = 5x(x + 3)
=> 6x - 3x2 + 2x2 - 2x = 5x2 + 15x
=> 4x - x2 - 5x2 - 15x = 0
=> -6x2 - 11x = 0
=> -x(6x - 11) = 0
=> \(\orbr{\begin{cases}-x=0\\6x-11=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=0\\x=\frac{11}{6}\end{cases}}\)
a) \(3x\left(4x-3\right)-2x\left(5-6x\right)=0\)
\(\Leftrightarrow12x^2-9x-10x+12x^2=0\)
\(\Leftrightarrow-19x=0\Leftrightarrow x=0\)
b) \(5\left(2x-3\right)+4x\left(x-2\right)+2x\left(3-2x\right)=0\)
\(\Leftrightarrow10x-15+4x^2-8x+6x-4x^2=0\)
\(\Leftrightarrow8x-15=0\Leftrightarrow x=\frac{15}{8}\)
\(x^2+2x^2+3x^2+4x^2+5x^2=220\)
\(\Leftrightarrow x^2+2^2.x^2+3^2.x^2+4^2.x^2+5^2.x^2=220\)
\(\Leftrightarrow x^2\left(1+2^2+3^2+4^2+5^2\right)=220\)
\(\Leftrightarrow x^2\left(1+4+9+16+25\right)=220\)
\(\Leftrightarrow x^2.55=220\)
\(\Leftrightarrow x^2=\frac{220}{55}\)
\(\Leftrightarrow x^2=4\)
\(\Leftrightarrow x=2\left(x>0\right)\)
Vậy \(x=2\)
x^2+4x^2+9x^2+16x^2+25x^2=220
55x^2=220
x^2=220:55
x^2=4
x=2
Vậy x có giá trị bằng 2