K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔOAD và ΔOBC có

OA=OB

góc AOD chung

OD=OC

Do đó: ΔOAD=ΔOBC

b: Xét ΔIDC có \(\widehat{ICD}=\widehat{IDC}\)

nên ΔIDC cân tại I

c: Ta có: IC=ID

OC=OD

Do đó: OI là đường trung trực của CD

hay OI\(\perp\)CD tại H

d: Xét ΔOCD có OA/OC=OB/OD

nên AB//CD

30 tháng 12 2017

a.Xét TG OAD và TG OBC có

OA=OB

OD=OC

Góc O chung

nên TG OAD=TG OBC

https://hoc24.vn/hoi-dap/question/533697.html

bn theo link này nha. Câu này mk trả lời rồihaha

2 tháng 12 2021

a: Xét ΔOAD và ΔOCB có

OA=OC

ˆOO^ chung

OD=OB

Do đó: ΔOAD=ΔOCB

Suy ra: AD=CB

2 tháng 12 2021

làm hết + vẽ hình đc ko bạn 

HÌnh bạn tự vẽ nha 

a, 

Ta có :

OC=AC+OA

OD=OB+BD

mà OA=OB ; AC=BD

=> OD=OC

Xét tam giác ODA và OCB ta có:

OA=OB(gt)

 O:góc chung

OD=OC(cmt)

=> Tam giác ODA=OCB(c.g.c)

=>AD=BC(2 cạnh tương ứng)

Bạn tự lm nốt nhé ^_^ mk bận r 

24 tháng 11 2023

a: Xét ΔOAD và ΔOCB có

OA=OC

\(\widehat{AOD}\) chung

OD=OB

Do đó: ΔOAD=ΔOCB

b: ΔOAD=ΔOCB

=>AD=CB và \(\widehat{OAD}=\widehat{OCB};\widehat{ODA}=\widehat{OBC}\)

\(\widehat{OAD}+\widehat{BAD}=180^0\)(hai góc kề bù)

\(\widehat{OCB}+\widehat{DCB}=180^0\)(hai góc kề bù)

mà \(\widehat{OAD}=\widehat{OCB}\)

nên \(\widehat{BAD}=\widehat{DCB}\)

=>\(\widehat{IAB}=\widehat{ICD}\)

OA+AB=OB

OC+CD=OD

mà OA=OC và OB=OD

nên AB=CD

Xét ΔIAB và ΔICD có

\(\widehat{IAB}=\widehat{ICD}\)

AB=CD

\(\widehat{IBA}=\widehat{IDC}\)

Do đó: ΔIAB=ΔICD

c: ΔIAB=ΔICD

=>ID=IB

Xét ΔOIB và ΔOID có

OI chung

IB=ID

OB=OD

Do đó: ΔOIB=ΔOID

=>\(\widehat{BOI}=\widehat{DOI}\)

=>OI là phân giác của góc DOB

=>OI là phân giác của \(\widehat{xOy}\)

24 tháng 11 2023

a: Xét ΔOAD và ΔOCB có

OA=OC

\(\widehat{AOD}\) chung

OD=OB

Do đó: ΔOAD=ΔOCB

b: ΔOAD=ΔOCB

=>AD=CB và \(\widehat{OAD}=\widehat{OCB};\widehat{ODA}=\widehat{OBC}\)

\(\widehat{OAD}+\widehat{BAD}=180^0\)(hai góc kề bù)

\(\widehat{OCB}+\widehat{DCB}=180^0\)(hai góc kề bù)

mà \(\widehat{OAD}=\widehat{OCB}\)

nên \(\widehat{BAD}=\widehat{DCB}\)

=>\(\widehat{IAB}=\widehat{ICD}\)

OA+AB=OB

OC+CD=OD

mà OA=OC và OB=OD

nên AB=CD

Xét ΔIAB và ΔICD có

\(\widehat{IAB}=\widehat{ICD}\)

AB=CD

\(\widehat{IBA}=\widehat{IDC}\)

Do đó: ΔIAB=ΔICD

c: ΔIAB=ΔICD

=>ID=IB

Xét ΔOIB và ΔOID có

OI chung

IB=ID

OB=OD

Do đó: ΔOIB=ΔOID

=>\(\widehat{BOI}=\widehat{DOI}\)

=>OI là phân giác của góc DOB

=>OI là phân giác của \(\widehat{xOy}\)