Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
HÌnh bạn tự vẽ nha
a,
Ta có :
OC=AC+OA
OD=OB+BD
mà OA=OB ; AC=BD
=> OD=OC
Xét tam giác ODA và OCB ta có:
OA=OB(gt)
O:góc chung
OD=OC(cmt)
=> Tam giác ODA=OCB(c.g.c)
=>AD=BC(2 cạnh tương ứng)
Bạn tự lm nốt nhé ^_^ mk bận r
a: Xét ΔOAD và ΔOCB có
OA=OC
\(\widehat{AOD}\) chung
OD=OB
Do đó: ΔOAD=ΔOCB
b: ΔOAD=ΔOCB
=>AD=CB và \(\widehat{OAD}=\widehat{OCB};\widehat{ODA}=\widehat{OBC}\)
\(\widehat{OAD}+\widehat{BAD}=180^0\)(hai góc kề bù)
\(\widehat{OCB}+\widehat{DCB}=180^0\)(hai góc kề bù)
mà \(\widehat{OAD}=\widehat{OCB}\)
nên \(\widehat{BAD}=\widehat{DCB}\)
=>\(\widehat{IAB}=\widehat{ICD}\)
OA+AB=OB
OC+CD=OD
mà OA=OC và OB=OD
nên AB=CD
Xét ΔIAB và ΔICD có
\(\widehat{IAB}=\widehat{ICD}\)
AB=CD
\(\widehat{IBA}=\widehat{IDC}\)
Do đó: ΔIAB=ΔICD
c: ΔIAB=ΔICD
=>ID=IB
Xét ΔOIB và ΔOID có
OI chung
IB=ID
OB=OD
Do đó: ΔOIB=ΔOID
=>\(\widehat{BOI}=\widehat{DOI}\)
=>OI là phân giác của góc DOB
=>OI là phân giác của \(\widehat{xOy}\)
a: Xét ΔOAD và ΔOCB có
OA=OC
\(\widehat{AOD}\) chung
OD=OB
Do đó: ΔOAD=ΔOCB
b: ΔOAD=ΔOCB
=>AD=CB và \(\widehat{OAD}=\widehat{OCB};\widehat{ODA}=\widehat{OBC}\)
\(\widehat{OAD}+\widehat{BAD}=180^0\)(hai góc kề bù)
\(\widehat{OCB}+\widehat{DCB}=180^0\)(hai góc kề bù)
mà \(\widehat{OAD}=\widehat{OCB}\)
nên \(\widehat{BAD}=\widehat{DCB}\)
=>\(\widehat{IAB}=\widehat{ICD}\)
OA+AB=OB
OC+CD=OD
mà OA=OC và OB=OD
nên AB=CD
Xét ΔIAB và ΔICD có
\(\widehat{IAB}=\widehat{ICD}\)
AB=CD
\(\widehat{IBA}=\widehat{IDC}\)
Do đó: ΔIAB=ΔICD
c: ΔIAB=ΔICD
=>ID=IB
Xét ΔOIB và ΔOID có
OI chung
IB=ID
OB=OD
Do đó: ΔOIB=ΔOID
=>\(\widehat{BOI}=\widehat{DOI}\)
=>OI là phân giác của góc DOB
=>OI là phân giác của \(\widehat{xOy}\)
Xét tam giác OAD và tam giác OBC , có :
Góc O chung
OA = OB ( gt )
OD = OC ( gt )
Suy ra tam giác OAD = tam giác OBC ( c - g - c )
a, OA = OB; AC = BD => OC = OD
Xét t/g OAD và t/g OBC có:
OA = OB (gt)
góc O chung
OC = OD (cmt)
=> t/g OAD = t/g OBD (c.g.c)
b,Vì t/g OAD = t/gOBD => góc ACK = góc BDK , góc CAK = góc DBK
Xét t/g KAC và t/g KBD có:
góc ACK = góc BDK (cmt)
AC = BD (gt)
góc CAK = góc DBK (cmt)
=> t/g KAC = t/g KBD (g.c.g)
=> AK = BK
Xét t/g OAK và t/g OBK có:
OA = OB (gt)
AK = BK (cmt)
OK chung
=> t/g OAK = t/g OBK (c.c.c)
=> góc AOK = góc BOK
=> OK là tia p/g của góc xOy
\(\text{#TuanNam}\)
`a,` Mình xp sửa đề câu a: cm: Tam giác `OAD =` Tam giác `OCB (` vì nếu là `OCD` thì k đúng, vì `3` điểm đó thẳng hàng `)`.
Xét Tam giác `OAD` và Tam giác `OCB` có:
`OA=OC (g``t)`
\(\widehat{O}\) chung
`OB=OD (g``t)`
`=>` Tam giác `OAD =` Tam giác `OCB (c-g-c)`
`b,` Hnhu đề bị sai ;-;
`