K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2021

a: Xét tứ giác AMCK có 

I là trung điểm của AC

I là trung điểm của MK

Do đó: AMCK là hình bình hành

mà \(\widehat{AMC}=90^0\)

nên AMCK là hình chữ nhật

Bài 1:

a: Xét tứ giác AMCK có

I là trung điểm của AC

I là trung điểm của MK

Do đó: AMCK là hình bình hành

mà \(\widehat{AMC}=90^0\)

nên AMCK là hình chữ nhật

b: BH=BC/2=5(cm)

=>AH=12cm

\(S_{ABC}=\dfrac{AH\cdot BC}{2}=\dfrac{12\cdot10}{2}=60\left(cm^2\right)\)

a: Xét tứ giác AMCK có

I là trung điểm của AC
I là trung điểm của MK

Do đó:AMCK là hình bình hành

mà \(\widehat{AMC}=90^0\)

nên AMCK là hình chữ nhật

b: Để AMCK là hình vuông thì AM=CM

=>AM=BC/2

hay ΔABC vuông tại A

21 tháng 12 2021

a)Xét tứ giác AMCK ta có: IM=IK( vì M đối xứng với K qua I); IA=IC(vì I là trung điểm của AC).

Do đó: tứ giác AMCK là hình bình hành.

Mà ∠AMC=90 độ(vì AMlà đường trung tuyến của ΔABC cân tại A  nên đồng thời là đường cao, hay AM⊥BC). Suy ra: AMCK là h.c.n(đpcm)

b) Vì AMCK là h.c.n.(chứng minh trên) nên AC=MK.

Mà AB=AC(tính chất tam giác cân). Do đó: AB=MK(=AC) (đpcm).

c) Để AMCK là hình vuông thì AM=AK⇒ΔAMK cân tại A. Khi đó đường trung tuyến AI sẽ đồng thời là đường cao, hay AI⊥MK.

Mặt khác, ta có: AB=MK(chứng minh trên); AK=BM(=MC). Do đó: AKMB là hình bình hành.

Suy ra:AB║MK. Mà MK⊥AI.nên AB⊥AI⇒AB⊥AC. Ta lại có: tam giác ABC cân tại A.

vậy nên: để AMCK là hình vuông thì tam giác ABC vuông cân tại A.

21 tháng 12 2021

a: Xét tứ giác AMCK có

I là trung điểm của AC

I là trung điểm của MK

Do đó: AMCK là hình bình hành

mà \(\widehat{AMC}=90^0\)

nên AMCK là hình chữ nhật

21 tháng 12 2021

a: Xét tứ giác AMCK có

I là trung điểm của AC

I là trung điểm của MK

Do đó: AMCK là hình bình hành

mà \(\widehat{AMC}=90^0\)

nên AMCK là hình chữ nhật

21 tháng 12 2021

Còn Câu B câu C nữa

22 tháng 11 2016

Hình học lớp 8

a. Tứ giác AMCK là HBH ( vì có 2 đường chéo cắt nhau tại trung điểm của mỗi đường ) và có góc M = 900 ( vì AM là đường trung trực của D cân cũng là đường cao) nên tứ giác AMCK là HCN.

b. Diện tích của hình chữ nhật biết AM = 12cm, MC = 5cm là :

SAMCK = 12. 5 = 60cm2

c. Để AMCK là HV thì cần AM = MC

khi đó ΔABC phải là tam giác vuông cân tại A để đường trung trực ứng với cạnh huyền bằng nửa cạnh huyền hay AM = MC.

22 tháng 11 2016

HÌNH VẼ NHƯ CỦA BẠN PHÙNG KHÁNH LINH NHÉ!!!!!1

a) Xét tứ giác AKCM có:

MI = MK (K là điểm đối xứng với M qua I (gt))

IA = IC (I là trung điểm AC (gt))

AC giao MK tại I

\(\Rightarrow\)AMCK là hình bình hành (dhnb) (1)

\(\Delta ABC\) cân tại A (gt)

AM là đường trung tuyến (gt)

\(\Rightarrow\) AM cũng là đường cao (t/c)

\(\Rightarrow\)\(\widehat{AMK} = 90^O\)(2)

Từ (1)(2) \(\Rightarrow\) AKCM là hình chữ nhật (dhnb)

b) Ta có công thức tính diện tích hình chữ nhật là:

\(S=a\cdot b\)

trong đó a là chiều dài (=AM=12cm)

b là chiều rộng (=MC=5cm)

\(\Rightarrow\) SAMCK = 12 * 5 = 60 (cm2)

c) Để AMCK là hình vuông

\(\Leftrightarrow\) AMCK vừa là hình chữ nhật, vừa là hình thoi

mà AMCK là hình chữ nhật (cmt)

Vậy ta cần tìm điều kiện để AMCK là hình thoi

Để AMCK là hình thoi

\(\Leftrightarrow\) AM = MC

\(MC=\frac{1}{2}BC\) (AM là đường trung tuyễn của \(\Delta ABC\)(gt))

\(\Leftrightarrow\) \(AM=\frac{1}{2}BC\)

\(\Leftrightarrow\) \(\Delta ABC\) vuông tại A (tính chất về đường trung tuyến ứng với cạnh huyền)

\(\Leftrightarrow\)\(\Delta ABC\) vuông cân tại A

Vậy muốn tứ giác AMCK là hình vuông thì \(\Delta ABC\) phải vuông cân tại A