cho tam giac ABCcan tai A lay D tren AB tren tia doi cua tia CA lay CE=BD va DE cat BC o M chung minh M la trung diem cua DE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trên tia đối của tia BC lấy F sao cho BF = MC
Nối D với F.
Ta có: \(\widehat{ABC}+\widehat{DBF}=180^o\) (kề bù)
\(\widehat{ACB}+\widehat{ECM}=180^o\) (kề bù)
mà \(\widehat{ABC}=\widehat{ACB}\) (\(\Delta ABC\) cân tại A)
\(\Rightarrow\widehat{DBF}=\widehat{ECM}\)
Xét \(\Delta DBF\) và \(\Delta ECM\) có:
DB = EC (gt)
\(\widehat{DBF}=\widehat{ECM}\) (c/m trên)
BF = CM (dựng hình)
\(\Rightarrow\Delta DBF=\Delta ECM\left(c.g.c\right)\)
\(\Rightarrow\widehat{BFD}=\widehat{CME}\)
mà \(\widehat{CME}=\widehat{DMF}\) (đối đỉnh)
\(\Rightarrow\widehat{BFD}=\widehat{DMF}\) hay \(\widehat{DFM}=\widehat{DMF}\)
\(\Rightarrow\Delta DMF\) cân tại D
\(\Rightarrow DF=DM\) (1)
mà \(\Delta DBF=\Delta ECM\)
\(\Rightarrow DF=EM\) (2)
Từ (1) và (2) \(\Rightarrow DM=EM\)
\(\Rightarrow M\) là tđ của DE.
Theo mk nghĩ thì \(\Delta ABC\) cần bổ sung thêm yếu tố "cân tại A" mới làm đc. Thanh Nga Nguyễn
a) Ta có : \(\left\{{}\begin{matrix}\widehat{ABC}+\widehat{CBD}=180^o\\\widehat{ACB}+\widehat{BCE}=180^o\end{matrix}\right.\left(kềbù\right)\)
Lại có : \(\widehat{ABC}=\widehat{ACB}\) (\(\Delta ABC\) cân tại A)
Nên : \(180^o-\widehat{ABC}=180^o-\widehat{ACB}\)
\(\Leftrightarrow\widehat{CBD}=\widehat{BCE}\)
Xét \(\Delta BDC,\Delta CBE\) có :
\(BC:Chung\)
\(\widehat{CBD}=\widehat{BCE}\left(cmt\right)\)
\(BD=CE\left(gt\right)\)
=> \(\Delta BDC=\Delta CBE\left(c.g.c\right)\)
Xét \(\Delta BID,\Delta CIE\) có :
\(\widehat{BID}=\widehat{CIE}\) (đối đỉnh)
\(BD=CE\left(gt\right)\)
\(\widehat{BDI}=\widehat{CEI}\) (do \(\Delta BDC=\Delta CBE\))
=> \(\Delta BID=\Delta CIE\left(g.c.g\right)\)
=> \(\left\{{}\begin{matrix}IB=IC\left(\text{2 cạnh tương ứng}\right)\\ID=IE\left(\text{2 cạnh tương ứng}\right)\end{matrix}\right.\)
b) Ta có : \(\left\{{}\begin{matrix}AB=AC\left(\text{tam giác ABC cân tại A}\right)\\BD=CE\left(gt\right)\end{matrix}\right.\)
Lại có : \(\left\{{}\begin{matrix}AB+BD=AD\\AC+CE=AE\end{matrix}\right.\)
Suy ra : \(AB+BD=AC+EC\)
\(\Leftrightarrow AD=AE\)
=> \(\Delta ADE\) cân tại A
Ta có : \(\widehat{ADE}=\widehat{AED}=\dfrac{180^o-\widehat{A}}{2}\left(1\right)\)
Xét \(\Delta ABC\) cân tại A có :
\(\widehat{ABC}=\widehat{ACB}=\dfrac{180^{^O}-\widehat{A}}{2}\left(2\right)\)
Từ (1) và (2) => \(\widehat{ADE}=\widehat{ABC}\left(=\dfrac{180^{^O}-\widehat{A}}{2}\right)\)
Mà thấy : 2 góc này ở vị trí đồng vị
=> \(BC//DE\rightarrowđpcm\)
c) Xét \(\Delta ABM,\Delta ACM\) có :
\(AB=AC\) (\(\Delta ABC\) cân tại A)
\(\widehat{ABM}=\widehat{ACM}\) (\(\Delta ABC\) cân tại A)
BM = CM (M là trung điểm của BC)
=> \(\Delta ABM=\Delta ACM\left(c.g.c\right)\)
=> \(\widehat{BAM}=\widehat{CAM}\) (2 góc tương ứng)
=> AM là tia phân giác của \(\widehat{A}\) (3)
Ta chứng minh : \(\Delta ABI=\Delta ACI\)
Suy ra : \(\widehat{AIB}=\widehat{AIC}\) (2 góc tương ứng)
=> AI là tia phân giác của \(\widehat{A}\) (4)
Từ (3) và (4) => \(AM\equiv AI\)
=> A, M, I thẳng hàng.
=> đpcm
a, xét t.giác BMC và t.giác DMA có:
BM=DM(gt)
\(\widehat{AMD}\)=\(\widehat{CMB}\)(vì đối đinh)
AM=MC(gt)
=>t.giác BMC=t.giác DMA(c.g.c)
=>\(\widehat{ADM}\)=\(\widehat{MBC}\)mà 2 góc này ở vị trí so le nên AD//BC
b,xét t.giác MAB và t.giác MCD có:
MA=MC(gt)
\(\widehat{AMB}\)=\(\widehat{CMD}\)(vì đối đỉnh)
MB=MD(gt)
=>t.giác MAB=t.giác MCD(c.g.c)
=>\(\widehat{MDC}\)=\(\widehat{MBA}\) mà 2 góc này ở vị trí so le nên AB//DC
xét t.giác DAB và t.giác DCB có:
\(\widehat{ADB}\)=\(\widehat{CBD}\)(vì so le)
DB cạnh chung
\(\widehat{ABD}\)=\(\widehat{CDB}\)(vì so le)
=>t.giác DAB=t.giác DCB(g.c.g)
=>DA=DC
=>t.giác ACD cân tại D
Kẻ \(DI\perp BC,EK\perp BC\left(I,K\in BC\right)\Rightarrow DI//EK\Rightarrow\widehat{IDF}=\widehat{KEF}\) (so le trong)
\(\widehat{B}=\widehat{KCE}\left(=\widehat{ACB}\right)\)
\(\Delta DIB=\Delta EKC\left(ch-gn\right)\Rightarrow DI=EK\) (2 cạnh t/ứ)
\(\Delta IDF=\Delta KEF\left(g.c.g\right)\Rightarrow DF=EF\)
Vậy F là trung điểm của DE.
a)
Ta có: ΔABC cân tại A => góc ABC = góc ACB
mà ACB = ECN ( 2 góc đối đinh )
==> ABD = ECN ( vì D ∈ BC )
Xét ΔDBM và ΔECN có:
+ BDM= NEC = 90°
+ BD = EC (gt)
+ ABD = ECN (cmt)
==> ΔDBM = ΔECN ( c.g.vuông - g.n.kề )
==> MD = NE ( 2 cạnh tương ứng ) ( đpcm )
Tự vẽ hình
Từ D vẽ DH // CE (H \(\in\) BC )
Vì DH // CE
=> \(\widehat{MDH}=\widehat{MEC}\) (so le trong )
và \(\widehat{DHM}=\widehat{MCE}\) (so le trong )
và \(\widehat{DHB}=\widehat{ACH}\) (đồng vị )
Vì \(\widehat{DHB}=\widehat{ACH}\)
mà \(\widehat{B}=\widehat{ACB}\) ( \(\Delta\) ABC cân tại A )
=> \(\widehat{B}=\widehat{DHB}\)
=> \(\Delta\) DHB cân tại D
=> DB = DH
mà DB = CE
=> DH = CE
Xét \(\Delta\) MDH và \(\Delta\) MCE có :
\(\widehat{MDH}=\widehat{MEC}\) (chứng minh trên )
DH = CE (chứng minh trên )
\(\widehat{DHM}=\widehat{MCE}\) (chứng minh trên )
=> \(\Delta\) MDH = \(\Delta\) MCE (g-c-g )
=> DM = ME (cặp cạnh tương ứng )
=> M là trung điểm của DE
=> đpcm
bạn ơi mk giải cho bạn ở kia rồi nhé!!!!