Tính giá trị của biểu thức sau :\(\frac{3a-b}{2a+7}+\frac{3b-a}{2b-7}vớia-b=7,a\ne\frac{-7}{2},b\ne\frac{7}{2}\) Giúp mk với mình cần gấp...!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(a-b=7\)
\(\Rightarrow b-a=-7\)
\(B=\frac{3a-b}{2a+7}+\frac{3b-a}{2b-7}\)
\(B=\frac{2a+\left(a-b\right)}{2a+7}+\frac{2b+\left(b-a\right)}{2b-7}\)
\(B=\frac{2a+7}{2a+7}+\frac{2b-7}{2b-7}\)
\(B=1+1\)
\(B=2\)
Vậy \(B=2\)
Tham khảo nhé~
\(B=\frac{3a-b}{2a+7}+\frac{3b-a}{2b-7}\)
\(=\frac{2a+\left(a-b\right)}{2a+7}+\frac{2b-\left(a-b\right)}{2b-7}\)
\(=\frac{2a+7}{2a+7}+\frac{2b-7}{2b-7}\) (vì a - b = 7)
\(=1+1=2\)
\(a-b=7\Leftrightarrow b=a-7\)
\(\Rightarrow P=\frac{3a-\left(a-7\right)}{2a-7}+\frac{3\left(a-7\right)-a}{2\left(a-7\right)-7}\)
\(=\frac{3a-a+7}{2a-7}+\frac{3a-21-a}{2a-14-7}\)
\(=\frac{2a+7}{2a-7}+\frac{2a-21}{2a-21}\)
\(=\frac{2a+7}{2a-7}+1=\frac{2a+7+2a-7}{2a-7}=\frac{4a}{2a-7}\)
Lời giải:
a)\(\dfrac{a}{b}=\dfrac{3}{4}\Leftrightarrow4a=3b\)
Và \(4a.5=3b.5\Leftrightarrow20a=15b\Leftrightarrow\dfrac{20a}{3}=5b\)
Khi đó:
\(A=\dfrac{2a-5b}{a-3b}=\dfrac{2a-\dfrac{20}{3}a}{a-4a}=\dfrac{-\dfrac{14}{3}a}{-3a}=\dfrac{-14}{\dfrac{3}{-3}}=14\)
b) Ta có:
\(a-b=7\Leftrightarrow b=a-7\)
\(B=\dfrac{3a-b}{2a+7}+\dfrac{3b-a}{2b-7}=\dfrac{3a-\left(a-7\right)}{2a+7}+\dfrac{3\left(a-7\right)-a}{2\left(a-7\right)-7}\)
\(B=\dfrac{3a-a+7}{2a+7}+\dfrac{3a-21-a}{2a-14-7}\)
\(B=\dfrac{2a+7}{2a+7}+\dfrac{2a-21}{2a-21}=1+1=2\)
Ta có a - b = 7 => a = 7 + b
Thay a = 7+b vào C có :
\(C=\frac{3\left(7+b\right)-b}{2\left(7+b\right)+7}+\frac{3b-7-b}{2b-7}\)
\(C=\frac{21+3b-b}{14+2b+7}+\frac{2b-7}{2b-7}\)
\(C=\frac{21+2b}{21+2b}+1=1+1=2\)
Vậy \(C=2\)
Ta có:\(a-b=7\Leftrightarrow7=a-b\)
Thay \(7=a-b\)vào biểu thức,ta được:
\(\frac{3a-b}{2a+7}+\frac{3a-b}{2b-7}=\frac{3a-b}{2a+a-b}+\frac{3a-b}{2b-a+b}\)
\(=\frac{3a-b}{3a-b}+\frac{3b-a}{3b-a}\)
\(=1+1\)
\(=2\)
Vậy giá trị của biểu thức C=2
Ta có : \(a-b=7\Rightarrow a=b+7\) (1)
Thay (1) vào \(\frac{3a-b}{2a+7}+\frac{3b-a}{2b-7}\) ta có:
\(\frac{3a-b}{2a+7}+\frac{3b-a}{2b-7}=\frac{3\left(b+7\right)-b}{2\left(b+7\right)+7}+\frac{3b-b-7}{2b-7}\)
\(=\frac{3b+21-b}{2b+14+7}+\frac{2b-7}{2b-7}\)
\(=\frac{2b+21}{2b+21}+1\)
\(=1+1\)
\(=2\)
Vậy \(\frac{3a-b}{2a+7}+\frac{3b-a}{2b-7}=2\)
cảm ơn bạn nha