giá trị a để đa thức P(x) =\(3x^3-8x^2+6x-a\) chia hết cho đa thức Q(x)=\(3x^2-5x+1\)là a=
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt phép chia và chia ra kp còn dư
Cho dư =0 thì sẽ chia hết
Từ đó tìm a
x4 - 5x2 + a : x2 - 3x + 2
=x2 + 3x +2 dư a - 4 ( Đây là phép tính chia đa thức 1 biến, bạn có thể thự thực hiện được, phải không?)
Để x4 - 5x2 +a chia hết cho x2 - 3x + 2 thì số dư phải bằng 0, tức a - 4 = 0
Suy ra: a = 4
a) Cho x2 - x + 5=0 =>x={ \(\frac{1}{2}+\frac{\sqrt{19}}{2}i;\frac{1}{2}-\frac{\sqrt{19}}{2}i\) }
Thay giá trị của x là \(\frac{1}{2}+\frac{\sqrt{19}}{2}i\)hoặc \(\frac{1}{2}-\frac{\sqrt{19}}{2}i\) vừa tìm được vào x4 - x3 + 6x2- x sẽ luôn được kết quả là -5
=>-5 +a=0 => a=5
b) Cho x+2=0 => x=-2
Thay giá trị của x vào biểu thức 2x3 - 3x2 + x sẽ được kết quả là -30
=> -30 + a=0 => a=30
a) Cho 3n +1 =0 => n= \(\frac{-1}{3}\)
Thay n= \(\frac{-1}{3}\)vào biểu thức 3n3 + 10n2 -5 sẽ được kết quả -4
Vậy n = -4
b) Cho n-1=0 => n=1
Thay n=1 vào biểu thức 10n2 + n -10 sẽ được kết quả là 1
Vậy n = 1
học hệ số bất định chưa z?
thôi mình cứ làm đi,để cho mình ôn lại kiến và giúp bạn ấy học nữa .