điểm A nằm ngoài đường tròn vẽ tiếp tuyến AB,AC cát tuyến ADE, BI là tia phân giác của góc DBE , I thuộc đường tròn cắt DE tại M
a. Tam giác ABM cân
b. Chứng minh \(\frac{BD^2}{BE^2}\) =\(\frac{AD}{AE}\)
C.Chứng minh BD.EC=EB.DC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Cùng bằng AD/AB=AD/AC.
b) tam giác BIE có góc AIB là góc ngoài nên góc AIB=góc IBE+góc IEB
mà góc IBE=IBD (gt) và góc IEB=góc ABD suy ra góc AIB=góc ABD+góc IBD=góc ABI
nên tam giác ABI cân tại A suy ra AI=AB=AC.
c)từ câu a) ta có BD/BE=CD/CE=DI/IE (do BI phân giác góc DBE)
suy ra CI phân giác góc DCE.
ABD =1/2 sđ BD (góc tạo bởi tiếp tuyến và dây cung )
BED =1/2 sđ BD (góc nội tiếp)
=> ABD=BED
ΔABD~ΔAEB
VÌ {BAD chung
ABD=BED
=>AB/AE = AD/AB=>AB^2= AD.AE
a, ta có: góc IBA = góc IBD + góc DBA
mà góc IBD = góc IBE (vì BI là tia phân giác góc DBE )
góc DBA = góc BEI ( góc nội tiếp và góc tạo bởi tia tiếp tuyến và dây cung cùng chắn cung DB)
=> góc IBE = góc IBE + góc BEI
mà góc AIB = góc IBE + góc BEI ( góc ngoài tam giác IBE)
=> góc AIB = góc IBE (=góc IBE + góc BEI)
=> tam giác IAB cân tại A
=> AI = AB
mà AB = AC (tính chất hai tiếp tuyến cắt nhau)
=> AB = AC = AI (đpcm)
b, từ câu a, ta được tam giác AIC là tam giác cân tại A
=> góc ACI = góc AIC
Mà góc ACD = góc CEI ( góc nội tiếp và góc tạo bởi tia tiếp tuyến và dây cung cùng chắn cung CD)
=> góc DCI = góc ACI - góc ACD = góc AIC - góc CEI (1)
ta lại có: góc ICE + góc CEI = góc AIC (góc ngoài tam giác CIE )
=> góc ICE = góc AIC - góc CEI (2)
Từ (1) và (2) => góc ICE = góc DCI
hay CI là phân giác góc DCE (đpcm)