K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 2 2017

\(x^2-5x+6=0\)

\(\Leftrightarrow x^2-2x-3x+6=0\)

\(\Leftrightarrow x\left(x-2\right)-3\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x-2\right)=0\)

\(\Rightarrow\left\{\begin{matrix}x-3=0\\x-2=0\end{matrix}\right.\Rightarrow\left\{\begin{matrix}x=3\\x=2\end{matrix}\right.\)

23 tháng 2 2017

Cảm ơn bạn nhiều lắm

6 tháng 4 2019

Bạn ơi bạn làm sai rùi vs lại bạn xem lại đề đi tại vì pt trên nếu giải ra sẽ có hai nghiệp là x=1, x=0 nha bạn

5 tháng 4 2016

a)  4-2m +2 = 0 

m = 3

b) thay m =2 vao ta co; 

x2 + 2x +2 = 0 ta tim dc tap nghiem tu giai nhe ng dep

NV
20 tháng 6 2019

Khi chia cho đa thức bậc 2 thì dư tối đa là bậc 1, giả sử đó là \(ax+b\)

\(\Rightarrow x^{2019}+x^{2018}+x+2018=\left(x^2-1\right).P\left(x\right)+ax+b\)

Trong đó \(P\left(x\right)\) là đa thức thương (ko cần quan tâm)

Thay lần lượt \(x=-1\)\(x=1\) vào ta được:

\(\left\{{}\begin{matrix}2017=-a+b\\2021=a+b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=2\\b=2019\end{matrix}\right.\)

Đa thức dư là \(2x+2019\)

AH
Akai Haruma
Giáo viên
20 tháng 6 2019

Lời giải:

Vì $x^2-1$ là đa thức bậc 2 nên đa thức dư khi chia $x^{2019}+x^{2018}+x+2018$ cho $x^2-1$ phải có bậc nhỏ hơn 2.

Đặt đa thức dư cần tìm là $ax+b$

Ta có:

\(x^{2019}+x^{2018}+x+2018=Q(x)(x^2-1)+ax+b\) với $Q(x)$ là đa thức thương

Lần lượt thay $x=1,x=-1$ ta có:

\(\left\{\begin{matrix} 2021=a+b\\ 2017=-a+b\end{matrix}\right.\Rightarrow \left\{\begin{matrix} a=2\\ b=2019\end{matrix}\right.\)

Vậy đa thức dư là $2x+2019$

23 tháng 4 2017

kết quả = -1

26 tháng 7 2015

A = 3 - /2x-1/ - (y+3)2 = 3 - ( /2x-1/ +  (y+3)2 ) \(\le\)

(Vì     ( /2x-1/ +  (y+3)2 ) \(\ge\)0     nên       - ( /2x-1/ +  (y+3)2 )\(\le\) 0    )

Vậy GTLN của A là 3 khi và chỉ khi  /2x-1/=0 \(\Leftrightarrow\)x=1/2 

                                                     và (y+3)2 =0 \(\Leftrightarrow\)y= -3