Cho tam giác ABC. Vẽ đường cao AD, lấy E sao cho AB là đường trung trực của DE, lấy F sao cho AC là đường trung trực của DF. Đoạn thẳng EF cắt AB và AC lần lượt tại K,I. CM: AD; BI; CK đồng quy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
AD=5cm;E,F=6cm;kết bạn với mình nha
CM=3cm;AD;BI;CK=346cm
a) Ta có: AB là đường trung trực của HD(gt)
⇔A nằm trên đường trung trực của HD
⇔AD=AH(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: AC là đường trung trực của HE(gt)
⇔A nằm trên đường trung trực của HE
⇔AE=AH(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra AE=AD(đpcm)
b) Xét ΔADH có AD=AH(cmt)
nên ΔADH cân tại A(Định nghĩa tam giác cân)
Ta có: ΔADH cân tại A(cmt)
mà AB là đường trung trực ứng với cạnh đáy HD(gt)
nên AB là đường phân giác ứng với cạnh HD(Định lí tam giác cân)
⇔AB là tia phân giác của \(\widehat{DAH}\)
⇔\(\widehat{DAH}=2\cdot\widehat{BAH}\)
Xét ΔAHE có AH=AE(cmt)
nên ΔAHE cân tại A(Định nghĩa tam giác cân)
Ta có: ΔAHE cân tại A(cmt)
mà AC là đường trung trực ứng với cạnh đáy HE(gt)
nên AC là đường phân giác ứng với cạnh HE(Định lí tam giác cân)
⇔AC là tia phân giác của \(\widehat{HAE}\)
⇔\(\widehat{HAE}=2\cdot\widehat{CAH}\)
Ta có: \(\widehat{DAH}+\widehat{EAH}=\widehat{DAE}\)(tia AH nằm giữa hai tia AD,AE)
mà \(\widehat{DAH}=2\cdot\widehat{BAH}\)(cmt)
và \(\widehat{HAE}=2\cdot\widehat{CAH}\)(cmt)
nên \(2\cdot\widehat{BAH}+2\cdot\widehat{CAH}=\widehat{DAE}\)
\(\Leftrightarrow\widehat{DAE}=2\cdot\left(\widehat{BAH}+\widehat{CAH}\right)\)
mà \(\widehat{BAH}+\widehat{CAH}=\widehat{BAC}\)(tia AH nằm giữa hai tia AB,AC)
nên \(\widehat{DAE}=2\cdot\widehat{BAC}\)(đpcm)
c) Ta có: AB là đường trung trực của HD(gt)
⇔AB vuông góc với HD tại trung điểm của HD
mà AB cắt HD tại I(gt)
nên AI⊥HD tại I và I là trung điểm của DH
Xét ΔADI vuông tại I và ΔAHI vuông tại I có
AD=AH(cmt)
AI chung
Do đó: ΔADI=ΔAHI(cạnh huyền-cạnh góc vuông)
tự kẻ hình nha:333
a) vì AB là trung trực của DM=> MH=HD( đặt H là giao điểm của AB và DM)
xét tam giác MAB và tam giác DAB có
MH=HD(cmt)
AHM=AHD(=90 độ)
AH chung
=> tam giác MAB= tam giác DAB(cgc)
=> AM=AD( hai cạnh tương ứng)
vì AC là trung trực của DN=> NK=DK( đặt K là giao điểm của AC và DN)
xét tam giác AKD và tam giác AKN có
DK=NK(cmt)
AKD=AKN(=90 độ)
AK chung
=> tam giác AKD= tam giác AKN( cgc)
=> AN=AD ( hai cạnh tương ứng)
AM=AD(cmt)
=> AM=AN=> tam giác AMN cân A
b) vì E thuộc đường trung trực AB=> EM=ED
vì F thuộc đường trung trực AC=> FD=FN
ta có MN=ME+EF+FN mà EM=ED, FD=FN
=> MN= ED+EF+FD
c) xét tam giác ADF và tam giác ANF có
FD=FN(cmt)
AD=AN(cmt)
AF chung
=> tam giác ADF= tam giác ANF(ccc)
=> ANF=ADF( hai góc tương ứng)
xét tam giác AME và tam giác ADE có
AM=AD(cmt)
AE chung
EM=ED(cmt)
=> tam giác AME= tam giác ADE(ccc)
=> AME=ADE( hai góc tương ứng)
mà AME=ANF( tam giác AMN cân A)
=> ADE=ADF=> AD là p/g của EDF
d) chưa nghĩ đc :)))))))