K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2016

A B C D E F K I

27 tháng 8 2016

AD=5cm;E,F=6cm;kết bạn với mình nha

CM=3cm;AD;BI;CK=346cm

a) Ta có: AB là đường trung trực của HD(gt)

⇔A nằm trên đường trung trực của HD

⇔AD=AH(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: AC là đường trung trực của HE(gt)

⇔A nằm trên đường trung trực của HE

⇔AE=AH(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra AE=AD(đpcm)

b) Xét ΔADH có AD=AH(cmt)

nên ΔADH cân tại A(Định nghĩa tam giác cân)

Ta có: ΔADH cân tại A(cmt)

mà AB là đường trung trực ứng với cạnh đáy HD(gt)

nên AB là đường phân giác ứng với cạnh HD(Định lí tam giác cân)

⇔AB là tia phân giác của \(\widehat{DAH}\)

\(\widehat{DAH}=2\cdot\widehat{BAH}\)

Xét ΔAHE có AH=AE(cmt)

nên ΔAHE cân tại A(Định nghĩa tam giác cân)

Ta có: ΔAHE cân tại A(cmt)

mà AC là đường trung trực ứng với cạnh đáy HE(gt)

nên AC là đường phân giác ứng với cạnh HE(Định lí tam giác cân)

⇔AC là tia phân giác của \(\widehat{HAE}\)

\(\widehat{HAE}=2\cdot\widehat{CAH}\)

Ta có: \(\widehat{DAH}+\widehat{EAH}=\widehat{DAE}\)(tia AH nằm giữa hai tia AD,AE)

mà \(\widehat{DAH}=2\cdot\widehat{BAH}\)(cmt)

và \(\widehat{HAE}=2\cdot\widehat{CAH}\)(cmt)

nên \(2\cdot\widehat{BAH}+2\cdot\widehat{CAH}=\widehat{DAE}\)

\(\Leftrightarrow\widehat{DAE}=2\cdot\left(\widehat{BAH}+\widehat{CAH}\right)\)

mà \(\widehat{BAH}+\widehat{CAH}=\widehat{BAC}\)(tia AH nằm giữa hai tia AB,AC)

nên \(\widehat{DAE}=2\cdot\widehat{BAC}\)(đpcm)

c) Ta có: AB là đường trung trực của HD(gt)

⇔AB vuông góc với HD tại trung điểm của HD

mà AB cắt HD tại I(gt)

nên AI⊥HD tại I và I là trung điểm của DH

Xét ΔADI vuông tại I và ΔAHI vuông tại I có

AD=AH(cmt)

AI chung

Do đó: ΔADI=ΔAHI(cạnh huyền-cạnh góc vuông)

22 tháng 6 2020

tự kẻ hình nha:333

a) vì AB là trung trực của DM=> MH=HD( đặt H là giao điểm của AB và DM)

xét tam giác MAB và tam giác  DAB có

MH=HD(cmt)

AHM=AHD(=90 độ)

AH chung

=> tam giác MAB= tam giác DAB(cgc)

=> AM=AD( hai cạnh tương ứng)

vì AC là trung trực của DN=> NK=DK( đặt K là giao điểm của AC và DN)

xét tam giác AKD và tam giác AKN có

DK=NK(cmt)

AKD=AKN(=90 độ)

AK chung

=> tam giác AKD= tam giác AKN( cgc)

=> AN=AD ( hai cạnh tương ứng)

AM=AD(cmt)

=> AM=AN=> tam giác AMN cân A

b) vì E thuộc đường trung trực AB=> EM=ED

vì F thuộc đường trung trực AC=> FD=FN

ta có MN=ME+EF+FN mà EM=ED, FD=FN

=> MN= ED+EF+FD

c) xét tam giác ADF và tam giác ANF có

FD=FN(cmt)

AD=AN(cmt)

AF chung

=> tam giác ADF= tam giác ANF(ccc)

=> ANF=ADF( hai góc tương ứng)

xét tam giác AME và tam giác ADE có

AM=AD(cmt)

AE chung

EM=ED(cmt)

=> tam giác AME= tam giác ADE(ccc)

=> AME=ADE( hai góc tương ứng)

mà AME=ANF( tam giác AMN cân A)

=> ADE=ADF=> AD là p/g của EDF

d) chưa nghĩ đc :)))))))

12 tháng 5 2021

CHUẨN R BN ƠI HỌC THÌ NGU MÀ CHƠI NGU THÌ GIỎI