Rút gọn biểu thức:
A= \(\frac{1}{\left(a-b\right)\left(a-c\right)}+\frac{1}{\left(b-a\right)
\left(b-c\right)}+\frac{1}{\left(c-a\left(c-b\right)\right)}\)
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
14 tháng 6 2016
\(A=\frac{1}{\left(a-b\right)\left(a-c\right)}+\frac{1}{\left(b-a\right)\left(b-c\right)}+\frac{1}{\left(c-a\right)\left(c-b\right)}\)
\(=\frac{c-b}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}+\frac{a-c}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}+\frac{b-a}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
\(=\frac{c-b+b-a+a-c}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=0\)
27 tháng 11 2017
\(A=\frac{1}{\left(a-b\right)\left(a-c\right)}+\frac{1}{\left(b-a\right)\left(b-c\right)}+\frac{1}{\left(c-a\right)\left(c-b\right)}\)
\(\frac{b-c-a+c+a-b}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}=\frac{0}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}=0\)
Theo ra ta có : A= 1/ (a−b)(a−c) + 1/ (b−a)(b−c)+1/ (c−a)(c−b)
ĐKXĐ : a khác b khác c
\(\Leftrightarrow\)A= 1/ (a−b)(a−c) - 1/(a−b) (b−c)+1/ (a−c)(b−c)
\(\Leftrightarrow\)A= ( b-c)-(a-c)+(a-b) /(a−b)(a−c)(b−c)
\(\Leftrightarrow\)A= 0
chúc bn học tốt
0