Giúp mình chút nhé mọi người giải bpt bên dưới :
\(\frac{\left|x^2-4x\right|+3}{x^2+\left|x-5\right|}\ge1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(f'\left(x\right)=\dfrac{1-x}{\sqrt{2x-x^2}}\)
\(f'\left(x\right)\ge1\Leftrightarrow\dfrac{1-x}{\sqrt{2x-x^2}}\ge1\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-x^2>0\\1-x>0\\\left(1-x\right)^2\ge2x-x^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}0< x< 2\\x< 1\\2x^2-4x+1\ge0\end{matrix}\right.\) \(\Rightarrow0< x\le\dfrac{2-\sqrt{2}}{2}\)
f'(x)=\(\dfrac{2-2x}{2\sqrt{2x-x^2}}\) = \(\dfrac{1-x}{\sqrt{2x-x^2}}\)
để f'(x) \(\ge\) 1 \(\Leftrightarrow\) \(\dfrac{1-x}{\sqrt{2x-x^2}}\) \(\ge\) 1 \(\Leftrightarrow\) 1-x \(\ge\) \(\sqrt{2x-x^2}\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}2x-x^2>0\\1-2x+x^2\ge2x-x^2\end{matrix}\right.\) \(\Rightarrow\) \(\left\{{}\begin{matrix}0< x< 2\\\left\{{}\begin{matrix}x< \dfrac{2-\sqrt{2}}{2}\\x>\dfrac{2+\sqrt{2}}{2}\end{matrix}\right.\end{matrix}\right.\)\(\Rightarrow\) 0<x\(\le\) \(\dfrac{2-\sqrt{2}}{2}\)
Bài 1:
Vì $a\geq 1$ nên:
\(a+\sqrt{a^2-2a+5}+\sqrt{a-1}=a+\sqrt{(a-1)^2+4}+\sqrt{a-1}\)
\(\geq 1+\sqrt{4}+0=3\)
Ta có đpcm
Dấu "=" xảy ra khi $a=1$
Bài 2:
ĐKXĐ: x\geq -3$
Xét hàm:
\(f(x)=x(x^2-3x+3)+\sqrt{x+3}-3\)
\(f'(x)=3x^2-6x+3+\frac{1}{2\sqrt{x+3}}=3(x-1)^2+\frac{1}{2\sqrt{x+3}}>0, \forall x\geq -3\)
Do đó $f(x)$ đồng biến trên TXĐ
\(\Rightarrow f(x)=0\) có nghiệm duy nhất
Dễ thấy pt có nghiệm $x=1$ nên đây chính là nghiệm duy nhất.
Tử và mẫu lớn hơn không với mọi x
=> BpT tương đương \(!x^2-4x!+3\ge x^2+!x-5!\\ \) (1)
chia khoảng: các điểm tới hạn x={0,4,5}
TH1: \(\left(I\right)x\le0\)
(1) \(\Leftrightarrow x^2-4x+3\ge x^2+5-x\Leftrightarrow-3x\ge2\Rightarrow x\le\frac{-2}{3}\)
Kết hợp (I)=>\(x\le-\frac{2}{3}\) là nghiệm.
TH2: \(\left(II\right)0< x< 4\)
(1) \(\Leftrightarrow-x^2+4x+3\ge x^2+5-x\Leftrightarrow2x^2-5x+2\le0\Rightarrow\frac{1}{2}\le x\le2\)
Kết hợp (II) \(\frac{1}{2}\le x\le2\) là nghiệm
TH3:(III) \(4\le x< 5\)
(1) \(\Leftrightarrow x^2-4x+3\ge x^2+5-x\Leftrightarrow-3x\ge2\Rightarrow x\le\frac{-2}{3}\)
Kết hợp (iii) loại
TH4: x>=5
\(\Leftrightarrow x^2-4x+3\ge x^2+x-5\Leftrightarrow-5x\ge-8\Rightarrow x\le\frac{8}{5}\) loại
Kết luận:
\(\left[\begin{matrix}x\le-\frac{2}{3}\\\frac{1}{2}\le x\le2\end{matrix}\right.\)