K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2021

\(x\left(2x-1\right)=2x\Leftrightarrow2x^2-x=2x\)

\(\Leftrightarrow2x^2-3x=0\Leftrightarrow x\left(2x-3\right)=0\Leftrightarrow x=0;x=\frac{3}{2}\)

12 tháng 8 2021

\(x.\left(2x-1\right)=2x\)

\(\Rightarrow2x^2-x-2x=0\)

\(\Rightarrow2x^2-3x=0\)

\(\Rightarrow x\left(2x-3\right)=0\)

\(\Rightarrow x=0\)hay \(2x-3=0\)

                       \(|\) \(2x=3\)

                       \(|\) \(x=\frac{3}{2}\)

13 tháng 11 2017

\(Q=\frac{x^2+2x+1}{x+2}=\frac{\left(x+1\right)^2}{x+2}\ge0\forall x>-2\) có GTNN là 0

13 tháng 2 2019

Để \(A=\frac{2x^2+3x+3}{2x+1}\)nguyên thì :

\(\left(2x^2+3x+3\right)⋮\left(2x+1\right)\)

\(\left(2x^2+x+2x+1+2\right)⋮\left(2x+1\right)\)

\(\left[x\left(2x+1\right)+\left(2x+1\right)+2\right]⋮\left(2x+1\right)\)

\(\left[\left(2x+1\right)\left(x+1\right)+2\right]⋮\left(2x+1\right)\)

Vì \(\left(2x+1\right)\left(x+1\right)⋮\left(2x+1\right)\)

\(\Rightarrow2⋮\left(2x+1\right)\)

\(\Rightarrow2x+1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

\(\Rightarrow x\in\left\{0;-1;0,5;-1,5\right\}\)

Vậy....

28 tháng 11 2023

1) \(A=5.\left|x-5\right|-3x+1\)

\(A=\left[{}\begin{matrix}5.\left(x-5\right)-3x+1\left(x-5\ge0\right)\\5.\left(5-x\right)-3x+1\left(x-5< 0\right)\end{matrix}\right.\)

\(A=\left[{}\begin{matrix}5x-25-3x+1\left(x\ge5\right)\\25-5x-3x+1\left(x< 5\right)\end{matrix}\right.\)

\(A=\left[{}\begin{matrix}2x-24\left(x\ge5\right)\\26-8x\left(x< 5\right)\end{matrix}\right.\)

29 tháng 11 2023

3:

\(Q=\dfrac{27-2x}{12-x}=\dfrac{2x-27}{x-12}\)

\(\Leftrightarrow Q=\dfrac{2x-24-3}{x-12}=2-\dfrac{3}{x-12}\)

Để Q lớn nhất thì \(2-\dfrac{3}{x-12}\) lớn nhất

=>\(\dfrac{3}{x-12}\) nhỏ nhất

=>x-12 là số nguyên âm lớn nhất

=>x-12=-1

=>x=11

Vậy: \(Q_{min}=2-\dfrac{3}{11-12}=2+3=5\) khi x=11

Bài 2:

a: \(\dfrac{5}{x}-\dfrac{y}{3}=\dfrac{1}{6}\)

=>\(\dfrac{15-xy}{3x}=\dfrac{1}{6}\)

=>\(15-xy=\dfrac{x}{2}\)

=>\(30-2xy=x\)

=>x+2xy=30

=>x(2y+1)=30

mà x,y nguyên

nên \(\left(x;2y+1\right)\in\left\{\left(30;1\right);\left(-30;-1\right);\left(2;15\right);\left(-2;-15\right);\left(10;3\right);\left(-10;-3\right)\right\}\)

=>\(\left(x,y\right)\in\left\{\left(30;0\right);\left(-30;-1\right);\left(2;7\right);\left(-2;-8\right);\left(10;1\right);\left(-10;-2\right)\right\}\)

b: \(\dfrac{5}{x}+\dfrac{y}{4}=\dfrac{1}{8}\)

=>\(\dfrac{20+xy}{4x}=\dfrac{1}{8}\)

=>\(\dfrac{40+2xy}{8x}=\dfrac{x}{8x}\)

=>40+2xy=x

=>x-2xy=40

=>x(1-2y)=40

mà x,y nguyên

nên \(\left(x;1-2y\right)\in\left\{\left(40;1\right);\left(-40;-1\right);\left(8;5\right);\left(-8;-5\right)\right\}\)

=>\(\left(x,y\right)\in\left\{\left(40;0\right);\left(-40;1\right);\left(8;-2\right);\left(-8;3\right)\right\}\)

30 tháng 8 2021

\(\dfrac{2x^3+x^2+2x+2}{2x+1}\left(đk:x\ne-\dfrac{1}{2}\right)=\dfrac{\left(2x+1\right)\left(x^2+1\right)}{2x+1}+\dfrac{1}{2x+1}=x^2+1+\dfrac{1}{2x+1}\)

Do x nguyên nên để biểu thức trên có giá trị nguyên thì :

\(1⋮2x+1\Rightarrow2x+1\inƯ\left(1\right)=\left\{1;-1\right\}\)

\(\Rightarrow x\in\left\{0;-1\right\}\)

\(\dfrac{2x^3+x^2+2x+2}{2x+1}\)

\(=\dfrac{2x^3+x^2+2x+1+1}{2x+1}\)

\(=x^2+1+\dfrac{1}{2x+1}\)

Để đó là số nguyên thì \(1⋮2x+1\)

\(\Leftrightarrow2x+1\in\left\{1;-1\right\}\)

\(\Leftrightarrow2x\in\left\{0;-2\right\}\)

hay \(x\in\left\{0;-1\right\}\)

21 tháng 6 2023

Câu 2: 

a) \(-2x\left(x-5\right)+3\left(x-1\right)+2x^2-13x\)

\(=-2x^2+10x+3x-3+2x^2-13x\)

\(=\left(-2x^2+2x^2\right)+\left(10x+3x-13x\right)-3\)

\(=0+0-3\)

\(=-3\)

Vậy giá trị của biểu thức không phụ thuộc vào biến

b) \(-x^2\left(2x^2-x-3\right)+x\left(x^2+2x^3+3\right)-3x\left(x^2+x\right)+x^3-3x\)

\(=-2x^4+x^3+3x^2+x^3+2x^4+3x-3x^3-3x^2+x^3-3x\)

\(=\left(-2x^4+2x^4\right)+\left(x^3+x^3-3x^3+x^3\right)+\left(3x^2-3x^2\right)+\left(3x-3x\right)\)

\(=0+0+0+0\)

\(=0\)

Vậy giá trị của biểu thức không phụ thuộc vào biến

21 tháng 6 2023

Câu 4: 

a) \(A=2x\left(3x^2-2x\right)+3x^2\left(1-2x\right)+x^2-7\)

\(A=6x^3-4x^2+3x^2-6x^3+x^2-7\)

\(A=-7\)

Thay \(x=-2\) vào biểu thức A ta có:

\(A=-7\)

Vậy giá trị của biểu thức A là -7 tại \(x=-2\)

b) \(B=x^5-15x^4+16x^3-29x^2+13x\)

\(B=x^5-\left(x+1\right)x^4+\left(x+2\right)x^3-\left(2x+1\right)x^2+\left(x-1\right)x\)

\(B=x^5-x^5-x^4+x^4+2x^3-2x^3-x^2+x^2-x\)

\(B=-x\)

Thay \(x=14\) vào biểu thức B ta được:

\(B=-14\)

Vậy giá trị của biểu thức B tại \(x=14\) là -14

12 tháng 12 2021
. Dạng 1: Tìm giá trị nguyên của x để biểu thức A nhận giá trị nguyên

+ Thông thường biểu thức A sẽ có dạng A = \frac{{f\left( x \right)}}{{g\left( x \right)}} trong đó f(x) và g(x) là các đa thức và g(x) ≠ 0

+ Cách làm:

- Bước 1: Tách về dạng A = m\left( x \right) + \frac{k}{{g\left( x \right)}} trong đó m(x) là một biểu thức nguyên khi x nguyên và k có giá trị là số nguyên

- Bước 2: Để A nhận giá trị nguyên thì \frac{k}{{g\left( x \right)}}nguyên hay k \vdots g\left( x \right) nghĩa là g(x) thuộc tập ước của k

- Bước 3: Lập bảng để tính các giá trị của x

- Bước 4: Kết hợp với điều kiện đề bài, loại bỏ những giá trị không phù hợp, sau đó kết luận bài toán

2. Dạng 2: Tìm giá trị của x để biểu thức A nhận giá trị nguyên

+ Đây là một dạng nâng cao hơn của dạng bài tập tìm gá trị nguyên của x để biểu thức A nhận giá trị nguyên bởi ta chưa xác định giá trị của biến x có nguyên hay không để biến đổi biểu thức A về dạng A = m\left( x \right) + \frac{k}{{g\left( x \right)}}. Bởi vậy, để làm được dạng bài tập này, chúng ta sẽ thực hiện các bước sau:

12 tháng 12 2021

\(Q=\dfrac{x+3-x+7}{2x+1}=\dfrac{10}{2x+1}\in Z\\ \Leftrightarrow2x+1\inƯ\left(10\right)=\left\{-10;-5;-2;-1;1;2;5;10\right\}\\ \Leftrightarrow x\in\left\{-3;-1;0;2\right\}\left(x\in Z\right)\)

17 tháng 9 2021

a)\(A=x^2+x+1=\left(x^2+x+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\)

b) \(B=2x^2+2x+1=2\left(x^2+x+\dfrac{1}{4}\right)+\dfrac{1}{2}=2\left(x+\dfrac{1}{2}\right)^2+\dfrac{1}{2}\ge\dfrac{1}{2}>0\)