Chứng tỏ số 1234567890 không là số chính phương
Trình bày lời giải đầy đủ giúp mk nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: 22018-22016=22016(22-1)
=22016(4-1)
=22016.3 chia hết cho 3
Vậy 22018-22016 chia hết cho 3
Gọi 5 số tự nhiên liên tiếp là n - 2, n - 1, n, n + 1, n + 2 \(\left(ĐK:n\in N;n>2\right)\)
Ta có: \(\left(n-2\right)^2+\left(n-1\right)^2+n^2+\left(n+1\right)^2+\left(n+2\right)^2\)\(=\left(n^2+2\right).5\)
Vì \(n^2\)tận cùng không phải là 3 hoặc 8 nên \(n^2+2\)không chia hết cho 5
Nên \(\left(n^2+2\right).5\)không phải là số chính phương
Vậy .................................................
Gọi 5 STN liên tiếp là n-2, n-1,n,n+1,n+2
Ta có A=(n-2)2+(n-1)2+n2+(n+1)2+(n+2)2
=5n2+10=5(n2+2)
n2 ko tận cùng là 3,8
=>n2+2 ko tận cùng là 5 hoặc 0
=>n2+2 ko chia hết cho 5
=>5(n2+2) ko chia hết cho 25
=>A ko phải số chính phương.
Ta có: (p - 1).(p + 1) = p2 - 1
Do p nguyên tố; p > 3 => p không chia hết cho 3 => p2 không chia hết cho 3 => p2 chia 3 dư 1
=> p2 - 1 chia hết cho 3 (1)
Do p nguyên tố, p > 3 => p lẻ => p2 lẻ => p2 chia 8 dư 1
=> p2 - 1 chia hết cho 8 (2)
Từ (1) và (2) => p2 - 1 chia hết cho 3 và 8
=> (p - 1).(p + 1) chia hết cho 3 và 8
Chứng tỏ nếu p nguyên tố > 3 thì (p - 1).(p + 1) chia hết cho 3 và 8
a và b lẻ
=> a=2k+1
b=2m+1
(k là số tự nhiên)
=>a2+b2=(2k+1)(2k+)+(2m+2)(2m+1)
=4k2+4k+1+4m2+4m+1
=4(k2+k+m2+m) + 2
mà số chính phương chia 4 chỉ có số dư 0 hoặc 1
=> a2+b2 không phải số chính phương
=>đpcm
\(\frac{3n+4}{n-1}\)= \(\frac{3\left(n-1\right)+7}{n-1}\)= 3 + \(\frac{7}{n-1}\)
để A có gt nguyên => n-1 thuộc ước của 7
với n-1 = 7 => n = 8 => A = 4 (nhận)
với n- 1 = -7 => n = -6 => A = 2 (nhận)
với n- 1 = -1 => n= 0 => A = 3 ( nhận)
với n-1 = 1 => n = 2=> A = 3 + \(\frac{7}{2}\)(loại)
Ta có:3n+4/n-1=3n-3+3+4/n-1=3n-3+7/n-1=3n-3/n-1+7/n-1=3n-3x1/n-1+7/n-1=3x(n-1)/n-1+7/n-1=3+7/n-1
Để 3n+4/n-1 hay (3n+4):(n-1) thì 7 chia hết cho (n-1)
=>n-1 thuộc Ư(7) hay n-1 thuộc {-7;-1;1;7}
Với n-1=-7 Với n-1=-1
n =-7+1 n =-1+1
n =-6 n =0
Với n-1=1 Với n-1=7
n =1+1 n =7+1
n =2 n =8
Vậy để 3n+4/n-1 thì n=-6;0;2;8
Thấy ngay số 1234567890 chia hết cho 5 (vì chữ số tận cùng là 0) nhưng không chia hết cho 25 (vì hai chữ số tận cùng là 90). Do đó số 1234567890 không phải là số chính phương.