f, \(x^2-x+25\)
\(=x^2-2.\dfrac{1}{2}.x+\left(\dfrac{1}{2}\right)^2-\left(\dfrac{1}{2}\right)^2+25\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{99}{4}\)
Vì \(\left(x-\dfrac{1}{2}\right)^2\) ≥ 0 nên \(\left(x-\dfrac{1}{2}\right)^2+\dfrac{99}{4}\ge\dfrac{99}{4}\) với mọi x
Dấu "=" xảy ra ⇔ \(x-\dfrac{1}{2}=0\Leftrightarrow x=\dfrac{1}{2}\)
Vậy GTNN của đa thức là \(\dfrac{99}{4}\) tại \(x=\dfrac{1}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: \(\left(3x-\dfrac{1}{5}\right)^2=\left(-\dfrac{3}{25}\right)^2\)
=>3x-1/5=3/25 hoặc 3x-1/5=-3/25
=>3x=8/25 hoặc 3x=2/25
=>x=8/75 hoặc x=2/75
2: \(\left(2x-\dfrac{1}{3}\right)^2=\left(-\dfrac{2}{9}\right)^2\)
=>2x-1/3=2/9 hoặc 2x-1/3=-2/9
=>2x=5/9 hoặc 2x=1/9
=>x=5/18 hoặc x=1/18
d) \(\left(x+2\right)\left(x^2-2x+4\right)\)
\(=\left(x+2\right)\left(x^2-2\cdot x+2^2\right)\)
\(=x^3+2^3\)
\(=x^3+8\)
e) \(\left(\dfrac{1}{4}-\dfrac{x}{5}\right)\left(\dfrac{x^2}{25}+\dfrac{x}{20}+\dfrac{1}{16}\right)\)
\(=\left(\dfrac{1}{4}-\dfrac{1}{5}x\right)\left(\dfrac{1}{25}x^2+\dfrac{1}{5}x\cdot\dfrac{1}{4}+\dfrac{1}{16}\right)\)
\(=\left(\dfrac{1}{4}-\dfrac{1}{5}x\right)\left[\left(\dfrac{1}{5}x\right)^2+\dfrac{1}{5}x\cdot\dfrac{1}{4}+\left(\dfrac{1}{4}\right)^2\right]\)
\(=\left(\dfrac{1}{4}\right)^3-\left(\dfrac{1}{5}x\right)^3\)
\(=\dfrac{1}{64}-\dfrac{1}{125}x^3\)
\(=\dfrac{1}{64}-\dfrac{x^3}{125}\)
d: (x+2)(x^2-2x+4)
=(x+2)(x^2-x*2+2^2)
=x^3+8
e: (1/4-x/5)(1/16+x/20+x^2/25)
=(1/4-x/5)[(1/4)^2+1/4*x/5+(x/5)^2]
=1/64-x^3/125
K chép lại đề, lm luôn nhé:
*\(\Rightarrow\) \(\left(\dfrac{7}{2}+2x\right)\cdot\dfrac{8}{3}=\dfrac{16}{3}\)
\(\Rightarrow\dfrac{7}{2}+2x=\dfrac{16}{3}:\dfrac{8}{3}=2\)
\(\Rightarrow2x=2-\dfrac{7}{2}=-\dfrac{3}{2}\)
\(\Rightarrow x=-\dfrac{3}{4}\)
* \(\Rightarrow\left|2x-\dfrac{2}{3}\right|=\dfrac{\dfrac{3}{4}-2}{2}=-\dfrac{5}{8}\)
=> K có gt x nào t/m đề
* Đề sai
* \(\Rightarrow\left[{}\begin{matrix}3x-1=0\\-\dfrac{1}{2}x+5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=10\end{matrix}\right.\)
*\(\Rightarrow\dfrac{1}{3}:\left(2x-1\right)=-5-\dfrac{1}{4}=-\dfrac{21}{4}\)
\(\Rightarrow2x-1=\dfrac{1}{3}:\left(-\dfrac{21}{4}\right)=-\dfrac{4}{63}\)
\(\Rightarrow2x=-\dfrac{4}{63}+1=\dfrac{59}{63}\)
\(\Rightarrow x=\dfrac{59}{63}:2=\dfrac{59}{126}\)
* \(\Rightarrow\left(2x+\dfrac{3}{5}\right)^2=\dfrac{9}{25}\)
\(\Rightarrow\left[{}\begin{matrix}2x+\dfrac{3}{5}=\dfrac{3}{5}\\2x+\dfrac{3}{5}=-\dfrac{3}{5}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=0\Rightarrow x=0\\2x=-\dfrac{6}{5}\Rightarrow x=-\dfrac{3}{5}\end{matrix}\right.\)
* \(\Rightarrow-5x-1-\dfrac{1}{2}x+\dfrac{1}{3}=\dfrac{3}{2}x-\dfrac{5}{6}\)
\(\Rightarrow-5x-\dfrac{1}{2}x-\dfrac{3}{2}x=-\dfrac{5}{6}+1-\dfrac{1}{3}\)
\(\Rightarrow-7x=-\dfrac{1}{6}\)
\(\Rightarrow x=-\dfrac{1}{6}:7=-\dfrac{1}{42}\)
a)\(\left(3\dfrac{1}{2}+2x\right).2\dfrac{2}{3}=5\dfrac{1}{3}\)
\(\left(\dfrac{7}{2}+2x\right).\dfrac{8}{3}=\dfrac{16}{3}\)
\(\dfrac{7}{2}+2x=\dfrac{16}{3}:\dfrac{8}{3}=2\)
\(2x=2-\dfrac{7}{2}=\dfrac{-3}{2}\Rightarrow x=\dfrac{-3}{4}\)
b)\(\dfrac{3}{4}-2.\left|2x-\dfrac{2}{3}\right|=2\)
\(2.\left|2x-\dfrac{2}{3}\right|=\dfrac{3}{4}-2=\dfrac{-1}{4}\)
\(\Rightarrow\left|2x-3\right|=\dfrac{-1}{8}\)
\(\Rightarrow x\in\varnothing\)
c) Đề sai,bạn có viết chữ x đâu,đó là phép tính mà.
d)\(\left(3x-1\right)\left(\dfrac{-1}{2}x+5\right)=0\)
\(\Leftrightarrow3x-1=0\Rightarrow x=\dfrac{1}{3}\)
\(\Leftrightarrow\dfrac{-1}{2}x+5=0\Rightarrow x=10\)
e)\(\dfrac{1}{4}+\dfrac{1}{3}:\left(2x-1\right)=-5\)
\(\dfrac{1}{3}:\left(2x-1\right)=-5-\dfrac{1}{4}=\dfrac{-21}{4}\)
\(2x-1=\dfrac{1}{3}:\dfrac{-21}{4}=\dfrac{-4}{63}\)
\(\Rightarrow2x=\dfrac{59}{63}\Rightarrow x=\dfrac{59}{126}\)
g)\(\left(2x+\dfrac{3}{5}\right)^2-\dfrac{9}{25}=0\)
\(\left(2x+\dfrac{3}{5}\right)^2=0+\dfrac{9}{25}=\dfrac{9}{25}\)
\(\dfrac{9}{25}=\left(\dfrac{3}{5}\right)^2=\left(\dfrac{-3}{5}\right)^2\)
\(th1:x=0\)
\(th2:x=\dfrac{-3}{5}\)
h)\(-5\left(x+\dfrac{1}{5}\right)-\dfrac{1}{2}\left(x-\dfrac{2}{3}\right)=\dfrac{3}{2}x-\dfrac{5}{6}\)
\(-5x+-1-\dfrac{1}{2}x-\dfrac{1}{3}=\dfrac{3}{2}x-\dfrac{5}{6}\)
\(\Leftrightarrow-5x+-1+\dfrac{5}{6}-\dfrac{1}{3}=2x\)
\(-5x+\dfrac{-1}{2}=2x\)
\(\dfrac{-1}{2}=2x+5x\)
\(\dfrac{-1}{2}=7x\Rightarrow x=\dfrac{-1}{14}\)
a: \(x=\left(-\dfrac{2}{3}\right)^5:\left(-\dfrac{2}{3}\right)^2=\left(-\dfrac{2}{3}\right)^3=-\dfrac{8}{27}\)
b: =>x-1/2=1/3
=>x=5/6
c: =>2/3x-1=0 hoặc 3/4x+1/2=0
=>x=3/2 hoặc x=-1/2:3/4=-1/2*4/3=-4/6=-2/3
d =>4/9:x=10/3:9/4=10/3*4/9=40/27
=>x=4/9:40/27=4/9*27/40=108/360=3/10
a) Ta có: \(\left(x^2-16\right)\left(\dfrac{x}{4}-\dfrac{4x+5}{3}\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x+4\right)\left(\dfrac{3x-16x-20}{12}\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x+4\right)\cdot\left(-13x-20\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\x+4=0\\-13x-20=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-4\\-13x=20\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-4\\x=\dfrac{-20}{13}\end{matrix}\right.\)
Vậy: \(x\in\left\{4;-4;\dfrac{-20}{13}\right\}\)
b) Ta có: \(\left(4x-1\right)\left(x+5\right)=x^2-25\)
\(\Leftrightarrow\left(4x-1\right)\left(x+5\right)-\left(x^2-25\right)=0\)
\(\Leftrightarrow\left(4x-1\right)\left(x+5\right)-\left(x+5\right)\left(x-5\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(4x-1-x+5\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(3x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+5=0\\3x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\3x=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=-\dfrac{4}{3}\end{matrix}\right.\)
Vậy: \(x\in\left\{-5;\dfrac{-4}{3}\right\}\)
c) Ta có: \(x\left(x+3\right)^3-\dfrac{x}{4}\cdot\left(x+3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\cdot\left[x\left(x+3\right)^2-\dfrac{1}{4}x\right]=0\)
\(\Leftrightarrow\left(x+3\right)\left[x\left(x^2+6x+9\right)-\dfrac{1}{4}x\right]=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^3+6x^2+9x-\dfrac{1}{4}x\right)=0\)
\(\Leftrightarrow\left(x+3\right)\cdot x\cdot\left(x^2+6x+\dfrac{35}{4}\right)=0\)
\(\Leftrightarrow x\left(x+3\right)\left(x^2+6x+9-\dfrac{1}{4}\right)=0\)
\(\Leftrightarrow x\left(x+3\right)\left[\left(x+3\right)^2-\dfrac{1}{4}\right]=0\)
\(\Leftrightarrow x\left(x+3\right)\left(x+3-\dfrac{1}{2}\right)\left(x+3+\dfrac{1}{2}\right)=0\)
\(\Leftrightarrow x\left(x+3\right)\left(x+\dfrac{5}{2}\right)\left(x+\dfrac{7}{2}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+3=0\\x+\dfrac{5}{2}=0\\x+\dfrac{7}{2}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\\x=-\dfrac{5}{2}\\x=-\dfrac{7}{2}\end{matrix}\right.\)
Vậy: \(x\in\left\{0;-3;-\dfrac{5}{2};-\dfrac{7}{2}\right\}\)
a)
\(\left|\dfrac{1}{2}-\dfrac{1}{3}+x\right|=-\dfrac{1}{4}-y\\ \Rightarrow\left\{{}\begin{matrix}\dfrac{1}{2}-\dfrac{1}{3}+x=-\dfrac{1}{4}-y\\\dfrac{1}{2}-\dfrac{1}{3}+x=\dfrac{1}{4}+y\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x+y=-\dfrac{5}{12}\\x-y=\dfrac{1}{12}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{6}\\y=-\dfrac{1}{4}\end{matrix}\right.\)
b)\(\left|x-y\right|+\left|y+\dfrac{9}{25}\right|=0\)
ta thấy : \(\left|x-y\right|\ge0\\ \left|y+\dfrac{9}{25}\right|\ge0\)\(\Rightarrow\left|x-y\right|+\left|y+\dfrac{9}{25}\right|\ge0\)
đẳng thửc xảy ra khi : \(\left\{{}\begin{matrix}x-y=0\\y+\dfrac{9}{25}=0\end{matrix}\right.\Rightarrow x=y=-\dfrac{9}{25}\)
vậy \(\left(x;y\right)=\left(-\dfrac{9}{25};-\dfrac{9}{25}\right)\)
c) \(\left(\dfrac{1}{2}x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{10}=0\)
ta thấy \(\left(\dfrac{1}{2}x-5\right)^{20}\:và\:\left(y^2-\dfrac{1}{4}\right)^{10}\) là các lũy thừa có số mũ chẵn
\(\Rightarrow\:\)\(\left(\dfrac{1}{2}x-5\right)^{20}\ge0\\ \left(y^2-\dfrac{1}{4}\right)^{10}\ge0\)\(\Rightarrow\left(\dfrac{1}{2}x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{10}\ge0\)
đẳng thức xảy ra khi \(\left\{{}\begin{matrix}\dfrac{1}{2}x-5=0\\y^2-\dfrac{1}{4}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=10\\\left[{}\begin{matrix}y=-\dfrac{1}{2}\\y=\dfrac{1}{2}\end{matrix}\right.\end{matrix}\right.\)
vậy cặp số x,y cần tìm là \(\left(10;\dfrac{1}{2}\right)\:hoặc\:\left(10;-\dfrac{1}{2}\right)\)
d)
\(\left|x\left(x^2-\dfrac{5}{4}\right)\right|=x\\ \Leftrightarrow x\left(x^2-\dfrac{5}{4}\right)=x\left(vì\:x\ge0\right)\\ \Leftrightarrow x\left(x^2-\dfrac{9}{4}\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\x^2-\dfrac{9}{4}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{3}{2}\end{matrix}\right.\end{matrix}\right.\)
vậy x cần tìm là \(-\dfrac{3}{2};0;\dfrac{3}{2}\)
e)\(x^2+\left(y-\dfrac{1}{10}\right)^4=0\)
ta thấy: \(x^2\ge0;\left(y-\dfrac{1}{10}\right)^4\ge0\)
\(\Rightarrow x^2+\left(y-\dfrac{1}{10}\right)^4\ge0\)
đẳng thức xảy ra khi: \(\left\{{}\begin{matrix}x=0\\y=\dfrac{1}{10}\end{matrix}\right.\)
vậy cặp số cần tìm là \(0;\dfrac{1}{10}\)
a: =>11(x-3)=6(x-5)
=>11x-33=6x-30
=>5x=3
=>x=3/5
b: =>(4/3-1/4x-5/12)-2x=8/5*5/3=8/3
=>-9/4x+11/12=8/3
=>-9/4x=32/12-11/12=21/12=7/4
=>x=-7/9
c: =>1/2x-1/3-2/3x-1=x
=>-1/6x-4/3=x
=>-7/6x=4/3
=>x=-4/3:7/6=-4/3*6/7=-24/21=-8/7
d: =>1-2x-3x+1=7/2
=>-5x=3/2
=>x=-3/10
a: Ta có: \(4x-2\left(1-x\right)=5\left(x-4\right)\)
\(\Leftrightarrow4x-2+2x=5x-20\)
\(\Leftrightarrow x=-18\)
b: Ta có: \(\dfrac{x}{6}+\dfrac{1-3x}{9}=\dfrac{-x+1}{12}\)
\(\Leftrightarrow6x+4\left(1-3x\right)=3\left(-x+1\right)\)
\(\Leftrightarrow6x+4-12x=-3x+3\)
\(\Leftrightarrow-3x=-1\)
hay \(x=\dfrac{1}{3}\)
c: Ta có: \(\left(x+2\right)^2-3\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=1\end{matrix}\right.\)
đúng