cho a,b,c ko âm a+b+c>0 CMR a/4a +4b+c +b/4b+4a+c +c/4c+4a+b<=1/3
giải nhanh giúp mk nhé!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bđt Cauchy ta có :
\(\sqrt{4a+1}\le\frac{4a+1+1}{2}=2a+1\)
\(\sqrt{4b+1}\le\frac{4b+1+1}{2}=2b+1\)
\(\sqrt{4c+1}\le\frac{4c+1+1}{2}=2c+1\)
\(\Rightarrow\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4b+1}\le2\left(a+b+c\right)+3=5\)(đpcm)
Áp dụng BĐT Bu-nhi-a-cốp-ski, ta có:
\(\left(1+1+1\right)\left[\left(\sqrt{4a+1}\right)^2+\left(\sqrt{4b+1}\right)^2+\left(\sqrt{4c+1}\right)^2\right]\)
\(\ge\left(\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4c+1}\right)^2\)
\(\Leftrightarrow\left(\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4c+1}\right)^2\le3\left(4a+1+4b+1+4c+1\right)\)
\(\Leftrightarrow VT^2\le21\)
\(\Rightarrow VT^2< 25\)
\(\Rightarrow VT< 5\)
Vậy \(\sqrt{4a+1}+\sqrt{4c+1}+\sqrt{4b+1}< 5\)
Sử dụng bđt cô-si cho 3 số là ok
\(a^4b^4+b^4c^4+c^4a^4\ge3\sqrt[3]{a^4b^4b^4c^4c^4a^4}=3a^4b^4c^4\)
P/S: Cái gt hơi thừa thì phải ???
Ta có:
\(\left(\sqrt{a}.\dfrac{\sqrt{a}}{\sqrt{4a+3bc}}+\sqrt{b}\dfrac{\sqrt{b}}{\sqrt{4b+3ac}}+\sqrt{c}\dfrac{\sqrt{c}}{\sqrt{4c+3ab}}\right)^2\le\left(a+b+c\right)\left(\dfrac{a}{4a+3bc}+\dfrac{b}{4b+3ac}+\dfrac{c}{4c+3ab}\right)\)
\(=2\left(\dfrac{a}{4a+3bc}+\dfrac{b}{4b+3ac}+\dfrac{c}{4c+3ab}\right)\)
Nên ta chỉ cần chứng minh:
\(\dfrac{a}{4a+3bc}+\dfrac{b}{4b+3ac}+\dfrac{c}{4c+3ab}\le\dfrac{1}{2}\)
\(\Leftrightarrow\dfrac{4a}{4a+3bc}+\dfrac{4b}{4b+3ac}+\dfrac{4c}{4c+3ab}\le2\)
\(\Leftrightarrow\dfrac{3bc}{4a+3bc}+\dfrac{3ac}{4b+3ac}+\dfrac{3ab}{4c+3ab}\ge1\)
\(\Leftrightarrow\dfrac{bc}{4a+3bc}+\dfrac{ac}{4b+3ac}+\dfrac{ab}{4c+3ab}\ge\dfrac{1}{3}\)
Thật vậy, ta có:
\(VT=\dfrac{\left(bc\right)^2}{4abc+3\left(bc\right)^2}+\dfrac{\left(ca\right)^2}{4abc+3\left(ac\right)^2}+\dfrac{\left(ab\right)^2}{4abc+3\left(ab\right)^2}\)
\(VT\ge\dfrac{\left(ab+bc+ca\right)^2}{3\left(ab\right)^2+3\left(bc\right)^2+3\left(ca\right)^2+12abc}=\dfrac{\left(ab+bc+ca\right)^2}{3\left(ab\right)^2+3\left(bc\right)^2+3\left(ca\right)^2+6abc\left(a+b+c\right)}\)
\(VT\ge\dfrac{\left(ab+bc+ca\right)^2}{3\left(ab+bc+ca\right)^2}=\dfrac{1}{3}\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=...\)
Trừ mỗi vế cho 1, ta có:
\(\frac{b-16a+16c}{4a}=\frac{c-16b+16a}{4b}=\frac{a-16c+16b}{4c}=\frac{a+b+c}{4.\left(a+b+c\right)}=\frac{1}{4}\)(vì a,b,c > 0 nên a+b+c>0)
\(\Leftrightarrow\hept{\begin{cases}b+16c=17a\\c+16a=17b\\a+16b=17c\end{cases}}\Leftrightarrow a=b=c\)
tự thay vào
\(\frac{4a}{b}=\frac{4b}{c}=\frac{4c}{a}=\frac{4a+4b+4c}{b+c+a}=\frac{4\left(a+b+c\right)}{a+b+c}=4\)
=> 4b=4a =>b=a
=> 4b=4c => b=c
=> a=b=c