cho x y là 2 số không âm thỏa mãn x+y=1. chứng minh:\(\dfrac{x}{y+1}+\dfrac{y}{x+1}\) \(\le\) 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C.hóa \(x+y=1\) và dùng C-S:
\(VT^2\le\frac{2x}{\left(y+1\right)^2}+\frac{2y}{\left(x+1\right)^2}\le\frac{8}{9}=VP^2\)
\(BDT\Leftrightarrow\frac{x}{\left(2-x\right)^2}+\frac{y}{\left(2-y\right)^2}\le\frac{4}{9}\left(1\right)\)
Ta có BĐT phụ \(\frac{x}{\left(2-x\right)^2}\le\frac{20}{27}x-\frac{4}{27}\)
\(\Leftrightarrow-\frac{\left(2x-1\right)^2\left(5x-16\right)}{27\left(x-2\right)^2}\le0\) *Đúng*
Tương tự cho 2 BĐT còn lại rồi cộng theo vế:
\(VT_{\left(1\right)}\le\frac{20}{27}\left(x+y\right)-\frac{4}{27}\cdot2=\frac{4}{9}=VP_{\left(1\right)}\)
"=" khi \(x=y=\frac{1}{2}\)
Áp dụng BĐT cô si với ba số không âm ta có :
1(x+1)2+x+18+x+18≥33√164=341(�+1)2+�+18+�+18≥31643=34
=> 1(x+1)2≥34−x+141(�+1)2≥34−�+14 (1)
Dấu '' = '' xảy ra khi x = 1
CM tương tự ra có " 1(y+1)2≥34−y+141(�+1)2≥34−�+14(2) ; 1(z+1)2≥34−z+141(�+1)2≥34−�+14 (3)
Dấu ''= '' xảy ra khi y = 1 ; z = 1
Từ (1) (2) và (3) => 1(x+1)2+1(y+1)2+1(z+1)2≥34⋅3−x+y+z+341(�+1)2+1(�+1)2+1(�+1)2≥34⋅3−�+�+�+34≥94−33√xyz+34=94−64=34≥94−3���3+34=94−64=34
BĐT được chứng minh
Dấu '' = '' của bất đẳng thức xảy ra khi x =y =z = 1
:()
Ta cần chứng minh:
\(\dfrac{1}{a+b}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\left(1\right)\left(a,b>0\right)\)
\(\Leftrightarrow\dfrac{4}{a+b}\le\dfrac{a+b}{ab}\\ \Leftrightarrow4ab\le\left(a+b\right)^2\\ \Leftrightarrow\left(a-b\right)^2\ge0\left(luôn.đúng\right)\)
\(DBXR\Leftrightarrow a=b\)
Do các phép biến đổi tương đương nên (1) luôn đúng
Áp dụng (1), ta có:
\(\dfrac{1}{2x+y+z}\le\dfrac{1}{4}\left(\dfrac{1}{x+y}+\dfrac{1}{x+z}\right)\le\dfrac{1}{4}\left[\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)+\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{z}\right)\right]=\dfrac{1}{16}\left(\dfrac{2}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)
Chứng minh tương tự, ta được:
\(\dfrac{1}{x+2y+z}\le\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{2}{y}+\dfrac{1}{z}\right)\)
\(\dfrac{1}{x+y+2z}\le\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{2}{z}\right)\)
Cộng từng vế BĐT, ta được:
\(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\le\dfrac{1}{16}.\left(\dfrac{4}{x}+\dfrac{4}{y}+\dfrac{4}{z}\right)=\dfrac{1}{4}.\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=\dfrac{1}{4}.4=1\)Hay \(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\le1\left(đpcm\right)\)
\(DBXR\Leftrightarrow x=y=z=\dfrac{3}{4}\)
Áp dụng bđt Cô-si vào 2 số dương có:
\(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{2}{\sqrt{xy}}\Rightarrow\dfrac{1}{2}\ge\dfrac{2}{\sqrt{xy}}\Rightarrow\sqrt{xy}\ge4\)
\(\Rightarrow\sqrt{x}+\sqrt{y}\ge2\sqrt{\sqrt{xy}}=2\sqrt{4}=4\)
Dấu = xảy ra \(\Leftrightarrow x=y=4\)
`1/x+1/y>=2/(\sqrt{xy})`
`<=>1/2>=2/(\sqrt{xy})`
`<=>\sqrt{xy}>=4`
`=>\sqrt{x}+\sqrt{y}>=2.2=4`
Dấu "=" xảy ra khi `x=y=4`
https://olm.vn/hoi-dap/detail/227981379332.html
Bạn tham khảo ở đây nhé.
\(GT\Leftrightarrow xy=2\left(x+y\right)\ge4\sqrt{xy}\Rightarrow\sqrt{xy}\ge4\)
\(\Rightarrow4\le\sqrt{xy}\le\dfrac{1}{4}\left(\sqrt{x}+\sqrt{y}\right)^2\)
\(\Rightarrow\sqrt{x}+\sqrt{y}\ge4\)
Dấu "=" xảy ra khi \(x=y=4\)
\(VT\le\dfrac{x}{2x+2y+2}+\dfrac{y}{2yz+2z+2}+\dfrac{z}{2z+2x+2}\)
Nên ta chỉ cần chứng minh: \(\dfrac{x}{x+y+1}+\dfrac{y}{y+z+1}+\dfrac{z}{z+x+1}\le1\)
\(\Leftrightarrow\dfrac{y+1}{x+y+1}+\dfrac{z+1}{y+z+1}+\dfrac{x+1}{z+x+1}\ge2\)
Thật vậy, ta có:
\(VT=\dfrac{\left(x+1\right)^2}{\left(x+1\right)\left(z+x+1\right)}+\dfrac{\left(y+1\right)^2}{\left(y+1\right)\left(x+y+1\right)}+\dfrac{\left(z+1\right)^2}{\left(z+1\right)\left(y+z+1\right)}\)
\(VT\ge\dfrac{\left(x+y+z+3\right)^2}{\left(x^2+y^2+z^2\right)+3\left(x+y+z\right)+xy+yz+zx+3}\)
\(VT\ge\dfrac{6\left(x+y+z\right)+2\left(xy+yz+zx\right)+12}{3\left(x+y+z\right)+xy+yz+zx+6}=2\) (đpcm)
Dấu "=" xảy ra khi \(x=y=z=1\)
Do \(\left\{{}\begin{matrix}x;y\ge0\\x+y=1\end{matrix}\right.\) \(\Rightarrow0\le x;y\le1\) \(\Rightarrow\left\{{}\begin{matrix}x^2\le x\\y^2\le y\end{matrix}\right.\)
\(\Rightarrow x^2+y^2\le x+y=1\)
\(P=\dfrac{x}{y+1}+\dfrac{y}{x+1}=\dfrac{x^2+y^2+x+y}{\left(x+1\right)\left(y+1\right)}=\dfrac{x^2+y^2+1}{xy+x+y+1}\)
\(=\dfrac{x^2+y^2+1}{xy+2}\le\dfrac{x^2+y^2+1}{2}\le\dfrac{1+1}{2}=1\) (đpcm)
Dấu "=" xảy ra khi \(\left(x;y\right)=\left(1;0\right);\left(0;1\right)\)