K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2021

Áp dụng bđt Cô-si vào 2 số dương có:

\(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{2}{\sqrt{xy}}\Rightarrow\dfrac{1}{2}\ge\dfrac{2}{\sqrt{xy}}\Rightarrow\sqrt{xy}\ge4\)

\(\Rightarrow\sqrt{x}+\sqrt{y}\ge2\sqrt{\sqrt{xy}}=2\sqrt{4}=4\)

Dấu = xảy ra \(\Leftrightarrow x=y=4\)

28 tháng 2 2021

`1/x+1/y>=2/(\sqrt{xy})`

`<=>1/2>=2/(\sqrt{xy})`

`<=>\sqrt{xy}>=4`

`=>\sqrt{x}+\sqrt{y}>=2.2=4`

Dấu "=" xảy ra khi `x=y=4`

NV
11 tháng 3 2021

\(GT\Leftrightarrow xy=2\left(x+y\right)\ge4\sqrt{xy}\Rightarrow\sqrt{xy}\ge4\)

\(\Rightarrow4\le\sqrt{xy}\le\dfrac{1}{4}\left(\sqrt{x}+\sqrt{y}\right)^2\)

\(\Rightarrow\sqrt{x}+\sqrt{y}\ge4\)

Dấu "=" xảy ra khi \(x=y=4\)

1 tháng 2 2023

Áp dụng BĐT cô si với ba số không âm ta có :

1(x+1)2+x+18+x+1833164=341(�+1)2+�+18+�+18≥31643=34

=> 1(x+1)234x+141(�+1)2≥34−�+14 (1)

Dấu '' = '' xảy ra khi x = 1 

CM tương tự ra có " 1(y+1)234y+141(�+1)2≥34−�+14(2) ; 1(z+1)234z+141(�+1)2≥34−�+14 (3)

Dấu ''= '' xảy ra khi y = 1 ; z = 1 

Từ (1) (2) và (3) => 1(x+1)2+1(y+1)2+1(z+1)2343x+y+z+341(�+1)2+1(�+1)2+1(�+1)2≥34⋅3−�+�+�+349433xyz+34=9464=34≥94−3���3+34=94−64=34

BĐT được chứng minh 

Dấu '' = '' của bất đẳng thức xảy ra khi x =y =z = 1

:()

14 tháng 4 2017

Bài 1:

Ta có: \(\dfrac{2a}{\sqrt{1+a^2}}=\dfrac{2a}{\sqrt{ab+bc+ca+a^2}}=\dfrac{2a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\)

\(\dfrac{b}{\sqrt{1+b^2}}=\dfrac{b}{\sqrt{ab+bc+ca+b^2}}=\dfrac{b}{\sqrt{\left(a+b\right)\left(b+c\right)}}\)

\(\dfrac{c}{\sqrt{1+c^2}}=\dfrac{c}{\sqrt{ab+bc+ca+c^2}}=\dfrac{c}{\sqrt{\left(a+c\right)\left(b+c\right)}}\)

Vậy \(P=\dfrac{2a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\dfrac{b}{\sqrt{\left(a+b\right)\left(b+c\right)}}+\dfrac{c}{\sqrt{\left(a+c\right)\left(b+c\right)}}\)

Áp dụng BĐT AM-GM ta có:

\(P\le a\left(\dfrac{1}{a+b}+\dfrac{1}{a+c}\right)+b\left(\dfrac{1}{4\left(b+c\right)}+\dfrac{1}{a+c}\right)+c\left(\dfrac{1}{4\left(b+c\right)}+\dfrac{1}{a+c}\right)=\dfrac{9}{4}\)

Bài 2:

Ta có:

\(\dfrac{1+\sqrt{1+x^2}}{x}=\dfrac{2+\sqrt{4\left(1+x^2\right)}}{2x}\le\dfrac{2+\dfrac{4+\left(1+x^2\right)}{2}}{2x}=\dfrac{9+x^2}{4x}\)

Tương tự ta cũng có:

\(\dfrac{1+\sqrt{1+y^2}}{y}\le\dfrac{9+y^2}{4y};\dfrac{1+\sqrt{1+z^2}}{z}\le\dfrac{9+z^2}{4z}\)

Cộng theo vế 3 BĐT trên ta có:

\(\dfrac{1+\sqrt{1+x^2}}{x}+\dfrac{1+\sqrt{1+y^2}}{y}+\dfrac{1+\sqrt{1+z^2}}{z}\le\dfrac{9+x^2}{4x}+\dfrac{9+y^2}{4y}+\dfrac{9+z^2}{4z}\)

\(=\dfrac{9\left(xy+yz+xz\right)+xyz\left(x+y+z\right)}{4xyz}\le\dfrac{9\cdot\dfrac{\left(x+y+z\right)^2}{3}+\left(xyz\right)^2}{4xyz}=xyz\)

Đẳng thức xảy ra khi \(x=y=z=\sqrt{3}\)

14 tháng 4 2017

Bài 1:

\(\dfrac{2a}{\sqrt{1+a^2}}=\dfrac{2a}{\sqrt{a^2+ab+bc+ca}}=\dfrac{2a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\)

Sau đó côsi

Tự làm nốt nhé, ra 3/2 đấy. Em học lớp 8 nên cách giải chỉ thế thôi. Câu 2 em chưa làm được

6 tháng 3 2018

Ta có: \(\left(x+y+z\right)\left(xy+yz+xz\right)\ge9xyz\)

\(VT=\dfrac{x}{1+yz}+\dfrac{y}{1+xz}+\dfrac{z}{1+xy}\)

\(=\dfrac{x^2}{x+xyz}+\dfrac{y^2}{y+xyz}+\dfrac{z^2}{z+xyz}\)

\(\ge\dfrac{\left(x+y+z\right)^2}{x+y+z+3xyz}\ge\dfrac{\left(x+y+z\right)^2}{x+y+z+\dfrac{\left(x+y+z\right)\left(xy+yz+xz\right)}{3}}\)

\(=\dfrac{3\left(x+y+z\right)}{4}\). Cần chứng minh:

\(\dfrac{3\left(x+y+z\right)}{4}\ge\dfrac{3\sqrt{3}}{4}\Leftrightarrow x+y+z\ge\sqrt{3}\)

BĐT cuối đúng vì \(x+y+z\ge\sqrt{3\left(xy+yz+xz\right)}=\sqrt{3}\)

\("="\Leftrightarrow x=y=z=\dfrac{1}{\sqrt{3}}\)

Ps: nospoiler

6 tháng 3 2018

Dùng cosi dạng engel là ra

26 tháng 2 2022

\(\left(1.x+9.\frac{1}{y}\right)^2\le\left(1^2+9^2\right)\left(x^2+\frac{1}{y^2}\right)\Rightarrow\sqrt{x^2+\frac{1}{y^2}}\ge\frac{1}{\sqrt{82}}\left(x+\frac{9}{y}\right)\)

\(TT:\sqrt{y^2+\frac{1}{z^2}}\ge\frac{1}{\sqrt{82}}\left(y+\frac{9}{z}\right);\sqrt{z^2+\frac{1}{x^2}}\ge\frac{1}{\sqrt{82}}\left(z+\frac{9}{x}\right)\)

\(S\ge\frac{1}{\sqrt{82}}\left(x+y+z+\frac{9}{x}+\frac{9}{y}+\frac{9}{z}\right)\ge\frac{1}{\sqrt{82}}\left(x+y+z+\frac{81}{x+y+z}\right)\)

\(=\frac{1}{\sqrt{82}}\left[\left(x+y+z+\frac{1}{x+y+z}\right)+\frac{80}{x+y+z}\right]\ge\sqrt{82}\)

22 tháng 6 2018

Ta có \(x^3+y^3\ge xy\left(x+y\right)\)

\(\Rightarrow1+x^3+y^3\ge xyz+xy\left(x+y+z\right)=xy\left(x+y+z\right)\)

Tương tự ta có

\(VT\ge\dfrac{\sqrt{xy\left(x+y+z\right)}}{xy}+\dfrac{\sqrt{yz\left(x+y+z\right)}}{yz}+\dfrac{\sqrt{zx\left(x+y+z\right)}}{zx}\)

\(=\sqrt{x+y+z}\left(\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{zx}}\right)\)

\(=\sqrt{x+y+z}.\dfrac{\sqrt{x}+\sqrt{y}+\sqrt{z}}{\sqrt{xyz}}\)

\(\ge\sqrt{3\sqrt[3]{xyz}}.\dfrac{3\sqrt[6]{xyz}}{1}=3\sqrt{3}\)

\("="\Leftrightarrow x=y=z=1\)

24 tháng 8 2018

WLOG \(x\ge y \ge z\)

Áp dụng BĐT AM-GM và BĐT Rearrangement ta có:

\(VT=\dfrac{x+1}{y+1}+\dfrac{y+1}{z+1}+\dfrac{z+1}{x+1}\)

\(=\dfrac{\left(x+y+z\right)^2+3\left(x+y+z\right)+xy^2+yz^2+xz^2+3}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\)

\(\le\dfrac{21+xy^2+yz^2+xz^2}{xy+yz+xz+4}\)\(\le\dfrac{21+x^2y+xyz+yz^2}{3\sqrt[3]{4\left(xy+yz+xz\right)}}\)

\(\le\dfrac{21+y\left(x+z\right)^2}{3\sqrt[3]{4\left(xy+yz+xz\right)}}\)\(\le\dfrac{21+\dfrac{\left(\dfrac{2\left(x+y+z\right)}{3}\right)^3}{2}}{3\sqrt[3]{4\left(xy+yz+xz\right)}}\)

\(=\dfrac{21+4}{3\sqrt[3]{4\left(xy+yz+xz\right)}}=\dfrac{25}{3\sqrt[3]{4\left(xy+yz+xz\right)}}=VP\)

Dấu "=" khi \(\left(x;y;z\right)=\left(2;1;0\right)\) và h.vị

24 tháng 8 2018

ai fix cho em xz^2 thanh x^2z voi a >...<

15 tháng 11 2017

\(VT=\dfrac{x\sqrt{y}+y\sqrt{x}}{x+y}-\dfrac{x+y}{2}\le\dfrac{\sqrt{2xy\left(x+y\right)}}{x+y}-\dfrac{x+y}{2}\)

\(\le\dfrac{\left(x+y\right)\sqrt{\dfrac{x+y}{2}}}{x+y}-\dfrac{x+y}{2}\). Cần cm \(\sqrt{\dfrac{x+y}{2}}-\dfrac{x+y}{2}\le\dfrac{1}{4}\)

Đặt \(x+y=t>0\) thì:

\(\sqrt{\dfrac{t}{2}}-\dfrac{t}{2}\le\dfrac{1}{4}\Leftrightarrow-\dfrac{1}{4}\left(\sqrt{2t}-1\right)^2\le0\) *Đúng*