Giá trị lớn nhất của \(A=\frac{a^{2014+2013}}{a^{2014+1}}\)
Giúp mình với mình cần gấp! Cảm ơn các bạn nhiều!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(x+2\right)^2+\left|x+2\right|+15\)
Ta có:
\(\left(x+2\right)^2\ge0\forall x\)
\(\left|x+2\right|\ge0\forall x\)
\(\Rightarrow\left(x+2\right)^2+\left|x+2\right|\ge0\forall x\)
\(\Rightarrow\left(x+2\right)^2+\left|x+2\right|+15\ge15\forall x\)
\(\Rightarrow A\ge15\)Dấu bằng xảy ra.
\(\Leftrightarrow x+2=0\Leftrightarrow x=-2\)
Vậy \(minA=15\Leftrightarrow x=-2\)
Vì |x−2013|≥0⇒|x−2013|+2≥2
⇒A=\(\frac{2026}{\left|x-2013\right|+2}\) ≤1013
=>A đạt giá trị lớn nhất là 1013 khi |x−2013|=0
⇔x−2013=0
⇔x=2013
Vậy A đạt giá trị lớn nhất là 1013 khi x=2013
Câu hỏi của Nguyễn Quỳnh Chi - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo nhé!
Ta có \(:\)\(\left(x-3,5\right)^2\ge0\forall x\in R\)
Để \(\left(x-3,5\right)^2+1\)nhỏ nhất \(\Leftrightarrow\left(x-3,5\right)^2=0\Rightarrow x=3,5\)
\(\Rightarrow\left(x-3,5\right)^2+1=0+1=1\)
Vậy giá trị nhỏ nhất của \(\left(x-3,5\right)^2+1\)là \(1\)tại \(x=3,5\)
a sẽ nhận 20 , b sẽ nhận 36 thì được phân số lớn nhất.kb nha
Tk mình đi mọi người mình bị âm nè!
Ai tk mình mình tk lại cho
Bài 2:
a) Ta có: \(\left|2x-5\right|\ge0\forall x\)
\(\Leftrightarrow-\left|2x-5\right|\le0\forall x\)
\(\Leftrightarrow-\left|2x-5\right|+3\le3\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{5}{2}\)
\(A=\frac{a^{2014}+2013}{2^{2014}+1}=\frac{a^{2014}+1+2002}{a^{2014}+1}=1+\frac{2012}{a^{2014}+1}\)
Để \(1+\frac{2012}{a^{2014}+1}\) đạt \(GTLN\Rightarrow\frac{2012}{a^{2014}+1}\) đạt \(GTLN\)
\(\Rightarrow a^{2014}+1\) phải nhỏ nhất
\(\Rightarrow a^{2014}+1\ge1\)
Dấu "=" xảy ra khi \(a^{2014}=0\Rightarrow a=0\)
\(\Rightarrow GTLN\) của \(A\) là \(2013\) tại \(a=0\)
Cảm ơn bạn nha!