Chứng minh B=(n^2+3n+1)^2-1 chia hết cho 24
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Đặt A = n^5 - n = n(n^4 - 1) = n(n^2 - 1)(n^2 + 1) = n(n - 1)(n + 1)(n^2 + 1)
Nếu n chia hết cho 5 ta dễ thấy đpcm
Nếu n : 5 dư 1 => n = 5k + 1
=> A = n.(5k + 1 - 1)(n + 1)(n^2 + 1) = n.5k.(n + 1)(n^2 + 1) chia hết cho 5
Nếu n : 5 dư 2 => n = 5k + 2
=> A = n(n - 1)(n + 1)[(5k + 2)^2 + 1] = n(n - 1)(n + 1)(25k^2 + 20k + 5)
= 5n(n - 1)(n + 1)(5k^2 + 4k + 1) chia hết cho 5
Nếu n : 5 dư 3 => n = 5k + 3
=>A = n(n - 1)(n + 1)(25k^2 + 30k + 10) = 5n(n - 1)(n + 1)(5k^2 + 6k + 2) chia hết cho 5
Nếu n : 5 dư 4 => n = 5k + 4
=> A = n(n - 1)(5k + 5)(n^2 + 1) = 5n(n - 1)(k + 1)(n^2 + 1) chia hết cho 5
Vậy trong tất cả trường hợp n^5 - n luôn chia hết cho 6
2) Đặt B = n^3 - 13n = n^3 - n -12n = n(n - 1)(n + 1) - 12n
Ta có : Trong 3 số nguyên liên tiếp tồn tại ít nhất 1 số chẵn và tồn tại ít nhất một số chia hết cho 3 nên tích của 3 số đó chia hết cho 2 và chia hết cho 3 mà (2;3) = 1 nên tích 3 số nguyên liên tiếp chia hết cho 6
=> n(n - 1)(n + 1) chia hết cho 6 mà 12n chia hết cho 6
=> n^3 - n chia hết cho 6
3) n^3 + 23n = n^3 - n + 24n = n(n - 1)(n + 1) + 24n
Tương tự câu 2 : n(n - 1)(n + 1) và 24n chia hết cho 6
=> n^3 + 23n chia hết cho 6
4)Đặt A = n(n + 1)(2n + 1) = n(n + 1)[2(n - 1) + 3]
= 2n(n + 1)(n - 1) + 3n(n + 1)
n(n + 1) là tích 2 số nguyên liên tiếp nên chia hết cho 2
2n(n + 1)(n - 1) chia hết cho 2
=> A chia hết cho 2
n(n + 1)(n - 1) là tích 3 số nguyên liên tiếp nên chia hết cho 3
3n(n + 1) chia hết cho 3
=> A chia hết cho 3
Mà (2 ; 3) = 1 (nguyên tố cùng nhau)
=> A chia hết cho 6
5) Đặt A = 3n^4 - 14n^3 + 21n^2 - 10n
Chứng minh bằng quy nạp
Với n =1 => A = 0 chia hết cho 24
Giả sử A chia hết 24 đúng với n = k
Nghĩa là :A(k) = 3k^4 - 14k^3 + 21k^2 - 10k chia hết cho 24
Ta phải chứng minh :
A chia hết cho 24 đúng với n = k + 1
Nghĩa là :
A(k + 1) = 3(k + 1)^4 - 14(k + 1)^3 + 21(k + 1)^2 - 10(k + 1)
Khai triển ta được :
A = (3k^4 - 14k^3 + 21k^2 - 10k) + (12k^3 - 24k^2 + 12k)
Ta phải chứng minh : 12k^3 - 24k^2 + 12k chia hết 24
12k^3 - 24k^2 + 12k = 12k(k^2 - 2k + 1)
= 12k(k - 1)^2 = 12k(k - 1)(k - 1)
12 chia hết 12
k(k - 1) là tích 2 số nguyên liên tiếp nên chia hết cho 2
=> 12k^3 - 24k^2 - 2k + 1 chia hết cho 24
Mà 3k^4 - 14k^3 + 21k^2 - 10k chia hết cho 24 (giả thiết quy nạp)
=> A(k + 1) chia hết 24
Theo nguyên lý quy nạp => A chia hết cho 24 (đpcm)
6) n = 2k + 1 với k thuộc Z
A = n^2 + 4n + 3 = (2k + 1)^2 + 4(2k + 1) + 3
= 4k^2 + 12k + 8
= 4(k^2 + 3k + 2)
= 4(k + 2k + k + 2)
= 4(k + 1)(k + 2)
4 chia hết cho 4
(k +1)(k + 2) là tích 2 số nguyên liên tiếp nên chia hết cho 2
=> n^2 + 4n + 3 chia hết cho 4.2 = 8 với n lẻ
7) n = 2k + 1
Đặt A = n^3 + 3n^2 - n - 3
= (2k + 1)^3 + 3(2k + 1)^2 - (2k + 1) - 3
= 8k^3 + 24k^2 + 16k
= 8k(k^2 + 3k + 2)
= 8k(k^2 + k + 2k + 2)
= 8k(k + 1)(k + 2)
8 chia hết cho 8
k(k + 1)(k + 2) là tích 3 số nguyên liên tiếp nên chia hết cho 2 và 3 => chia hết cho 6
=> A chia hết cho 8.6 = 48 với n lẻ
`(n^2+3n+1)^2-1`
`=(n^2+3n+1)-1^2`
`=(n^2+3n+1+1)(n^2+3n+1-1)`
`=(n^2+3n+2)(n^2+3n)`
`=(n+1)(n+2)n(n+3)`
`=n(n+1)(n+2)(n+3)` là tích của 4 số tự nhiên liên tiếp.
`=> n(n+1)(n+2)(n+3) vdots 24`
Sai ở chỗ "Mà 3;2;4 là 3 số nguyên tố cùng nhau." rồi Điều ơi
Phải là "Mà 3;2.4 nguyên tố cùng nhau."
2 nhân 4 nhé!
Đọc chép lại thôi cũng sai.
Ta có:\(n^4+3n^3-n^2-3n=n^3.\left(n+3\right)-n.\left(n+3\right)=\left(n+3\right).\left(n^3-n\right)=\left(n+3\right).n.\left(n^2-1\right)=n.\left(n-1\right).\left(n+1\right).\left(n+3\right)⋮6\)b)Ta có:\(\left(2n-1\right)^3-2n+1=\left(2n-1\right).\left(\left(2n-1\right)^2-1\right)=\left(2n-1\right).\left(2n-1-1\right).\left(2n-1+1\right)=2n.\left(2n-1\right).\left(2n-2\right)⋮24\)
\(\left(n^2+3n+1\right)^2-1\)
\(=\left[\left(n^2+3n\right)+1\right]^2-1\)
\(=\left(n^2+3n\right)^2+2\cdot\left(n^2+3n\right)\cdot1+1^2-1\)
\(=n^4+6n^3+9n^2+2n^2+6n\)
\(=n^4+6n^3+11n^2+6n\)
Bạn tham khảo tiếp :
Cái này hiểu nhưng hơi dài, đi copy sorry mn
dat A(n) = n^4+6n^3+11n^2+6n va A chia het cho 24 (1)
+) voi n = 1 => A = 24 chia het cho 24. vay (1) dung voi n = 1.(*)
+) gia su (1) dung voi n = k tuc la A(k) = k^4+6k^3+11k^2+6k chia het cho 24 (**).
+) gio ta phai chung minh (1) cung dung voi n = (k+1). that vay ta co:
A(k+1) = (k+1)^4+6(k+1)^3+11(k+1)^2+6(k+1) = (k+1)[(k+1)^3+6(k+1)^2+11(k+1)+6] =
= (k+1)(k+2)[(k+1)^2+5(k+1)+6] = (k+1)(k+2)(k+3)(k+4)
nhan thay A(k+1) la h cua so tu nhien lien tiep=> A(k+1) chia het cho 24 (***)
tu (*) (**) va (***) => A(n) = n^4+6n^3+11n^2+6n chia het cho 24 voi moi n thuoc N(*).
\(\left(n^2+3n+1\right)^2-1=\left(n^2+3n+1+1\right)\left(n^2+3n+1-1\right)\)
\(=\left(n^2+3n+2\right)\left(n^2+3n\right)\)
\(=\left(n+1\right)\left(n+2\right)n\left(n+3\right)\) (tích 4 số tự nhiên liên tiếp chia hết cho 24)
a)
n3+3n2+2n
= n3+ n2+2n2+2n
= n2(n+1) +2n(n+1)
= ( n+1)n(n+2)
Có n(n+1)(n+2) chia hết cho 6 vì là tích của 3 số nguyên liên tiếp
b)
(n2+n-1)2-1
= (n2+n-1-1)(n2+n-1+1)
= (n2+n-2)(n2+n)
= [ (n2-n) + (2n-2)] n (n+1)
= [ n(n-1) + 2(n-1)] n (n+1)
= n(n-1)(n+1)(n+2)
Có n(n-1)(n+1) là tích 3 số nguyên liên tiếp nên chia hết cho 6
mà n(n-1) là tích 2 số nguyên liên tiếp nên chia hết cho 2 và(n+1)(n+2) là tích 2 số nguyên liên tiếp nên chia hết cho 2
nên n(n-1)(n+1)(n+2) chia hết cho 4
\(\Rightarrow\) n(n-1)(n+1)(n+2) chia hết cho 24
a) n3+3n2+2n
=n(n2+3n+2)
=n(n2+2n+n+2)
=n[(n2+2n)+(n+2)]
=n[n(n+2)+(n+2)]
=n(n+2)(n+1) ⋮6 (3 số nguyên liên tiến nhân với nhau ⋮6) (đpcm)
a,A=(n-1).(n+1)-n^2+3n-5
= n^2 - 1 - n^2 + 3n - 5
= 3n - 6
= 3(n - 2) chia hết cho 3
b,A=(2n-1).(n+1)-n(2n-4)+21
= 2n^2 + n - 1 - 2n^2 + 4n + 21
= 5n + 20 = 5(n + 4) chia hết cho5
A = ( n - 1 )( n + 1 ) - n2 + 3n - 5
= n2 - 1 - n2 + 3n - 5
= 3n - 6 = 3( n - 2 ) chia hết cho 3 ( đpcm )
A = ( 2n - 1 )( n + 1 ) - n( 2n - 3n ) + 21
= 2n2 + n - 1 - n( -n ) + 21
= 2n2 + n + 20 + n2
= 3n2 + n + 20 ( cái này chưa chắc được :)) )