K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 2 2017

\(\left(xy-y\right)+\left(x^2-x\right)+\left(2y^2-2xy^2\right)=1\)

\(\left(x-1\right)y+\left(x-1\right)x-2y^2\left(x-1\right)=1\)

\(\left(x-1\right)\left(y+x-2y^2\right)=1\)

Giải hệ nghiệm nguyên

\(\left(I\right)\left\{\begin{matrix}x-1=1\\x+y-2y^2=1\end{matrix}\right.\Leftrightarrow\left\{\begin{matrix}x=2\\2y^2-y-1=0\end{matrix}\right.\left\{\begin{matrix}x=2\\y=\left\{1\right\}\end{matrix}\right.\)

\(\left(II\right)\left\{\begin{matrix}x-1=-1\\x+y-2y^2=-1\end{matrix}\right.\Leftrightarrow\left\{\begin{matrix}x=0\\2y^2-y-1=0\end{matrix}\right.\Rightarrow}\left\{\begin{matrix}x=0\\y=1\end{matrix}\right.\)Kết luận

(x,y)=(2,1); (0,1)

8 tháng 2 2017

\(1+x+y+2xy^2=xy+x^2+2y^2\)

\(\Leftrightarrow\left(x^2-x\right)+\left(2y^2-2xy^2\right)+\left(xy-y\right)=1\)

\(\Leftrightarrow\left(x-1\right)\left(x-2y^2+y\right)=1\)

\(\Rightarrow\left(x-1,x-2y^2+y\right)=\left(1,1;-1,-1\right)\)

Tới đây thì đơn giản rồi nhé

8 tháng 2 2017

Xét \(\hept{\begin{cases}x-1=1\\x-2y^2+y=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=2\\2y^2-y=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=2\\y=1\end{cases}}\)

Cái còn lại làm tương tự

9 tháng 2 2017

\(x^2+xy-2xy^2-x+2y^2-y-1=0\)

\(x^2+xy-2xy^2-x+2y^2-y-1=x^2-\left(2y^2-y-1\right)x+2y^2-y-1=0\)đặt 2y^2-y-1=z

y nguyên => z nguyên

<=>\(x^2-zx+z=0\Leftrightarrow z\left(x-1\right)=x^2\Rightarrow z=\frac{x^2}{x-1}\)

\(z=x+1+\frac{1}{x-1}\Rightarrow\left[\begin{matrix}x=0\\x=2\end{matrix}\right.\Rightarrow\left[\begin{matrix}z=0\\z=4\end{matrix}\right.\)

Với z=0

\(2y^2-y-1=0\Rightarrow\left[\begin{matrix}y=1\\y=\frac{-1}{2}\left(loai\right)\end{matrix}\right.\)

với z=4

\(2y^2-y-1=4\Rightarrow2y^2-y-5=0vonghiemnguyen\)

Kết luận:

x=0 và y=1 là nghiệm

a) Ta có: \(VT=\left(x-y-z\right)^2\)

\(=\left(x-y-z\right)\left(x-y-z\right)\)

\(=x^2-xy-xz-yx+y^2+yz-zx+zy+z^2\)

\(=x^2+y^2+z^2-2xy+2yz-2xz\)

=VP(đpcm)

b) Ta có: \(VT=\left(x+y-z\right)^2\)

\(=\left(x+y-z\right)\left(x+y-z\right)\)

\(=x^2+xy-xz+yx+y^2-yz-zx-zy+z^2\)

\(=x^2+y^2+z^2+2xy-2yz-2zx\)

=VP(đpcm)

c) Sửa đề: Chứng minh \(\left(x-y\right)\left(x^3+x^2y+xy^2+y^3\right)=x^4-y^4\)

Ta có: \(VT=\left(x-y\right)\left(x^3+x^2y+xy^2+y^3\right)\)

\(=x^4+x^3y+x^2y^2+xy^3-x^3y-x^2y^2-xy^3-y^4\)

\(=x^4-y^4\)

=VP(đpcm)

d) Ta có: \(VT=\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)\)

\(=x^5-x^4y+x^3y^2-x^2y^3+xy^4+x^4y-x^3y^2+x^2y^3-xy^4+y^5\)

\(=x^5+y^5\)

=VP(đpcm)

20 tháng 7 2020

a, b, nhân vào là ra à

c, nghe cứ là lạ

d, cũng nhân là ra hà

\(=x^5-x^4y+x^3y^2-x^2y^3+xy^4+x^4y-x^3y^2+x^2y^3-xy^4+y^5=x^5+y^5\)

12 tháng 10 2021

Bài 2: 

a: \(3x^2-3xy=3x\left(x-y\right)\)

b: \(x^2-4y^2=\left(x-2y\right)\left(x+2y\right)\)

c: \(3x-3y+xy-y^2=\left(x-y\right)\left(3+y\right)\)

d: \(x^2-y^2+2y-1=\left(x-y+1\right)\left(x+y-1\right)\)

18 tháng 10 2021

ỳtct7ct7c7c7t79tc9

 

NV
9 tháng 11 2021

\(\Leftrightarrow\left(x^2+y^2+1-2xy+2x-2y\right)+\left(y^2-4y+4\right)=4\)

\(\Leftrightarrow\left(x-y+1\right)^2+\left(y-2\right)^2=4=2^2+0^2=0^2+2^2\)

\(\Rightarrow x;y\)

2 tháng 2 2024

\(2xy^2+x+y-1=x^2+2y^2+xy\\\Leftrightarrow 2xy^2+x+y-1-x^2-2y^2-xy=0\\\Leftrightarrow(2xy^2-2y^2)-(xy-y)-(x^2-x)=1\\\Leftrightarrow2y^2(x-1)-y(x-1)-x(x-1)=1\\\Leftrightarrow(x-1)(2y^2-y-x)=1\)

Vì \(x,y\) nguyên \(\Rightarrow x-1;2y^2-y-x\) có giá trị nguyên

Mà: \(\left(x-1\right)\left(2y^2-y-x\right)=1\)

Do đó ta có các trường hợp xảy ra là:

\(+,\left\{{}\begin{matrix}x-1=1\\2y^2-y-x=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\2y^2-y-3=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\\left(2y-3\right)\left(y+1\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y\in\left\{\dfrac{3}{2};-1\right\}\end{matrix}\right.\)

Mà \(x,y\) nguyên nên: \(x=2;y=-1\)

\(+,\left\{{}\begin{matrix}x-1=-1\\2y^2-y-x=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\2y^2-y+1=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\2\left(y-\dfrac{1}{4}\right)^2+\dfrac{7}{8}=0\left(\text{vô lí}\right)\end{matrix}\right.\)

Vậy \(x=2;y=-1\) là các giá trị cần tìm.

\(\text{#}Toru\)