Tìm \(x,y\in Z\) : \(1+x+y+2xy^2=xy+x^2+2y^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1+x+y+2xy^2=xy+x^2+2y^2\)
\(\Leftrightarrow\left(x^2-x\right)+\left(2y^2-2xy^2\right)+\left(xy-y\right)=1\)
\(\Leftrightarrow\left(x-1\right)\left(x-2y^2+y\right)=1\)
\(\Rightarrow\left(x-1,x-2y^2+y\right)=\left(1,1;-1,-1\right)\)
Tới đây thì đơn giản rồi nhé
Xét \(\hept{\begin{cases}x-1=1\\x-2y^2+y=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=2\\2y^2-y=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=2\\y=1\end{cases}}\)
Cái còn lại làm tương tự
\(x^2+xy-2xy^2-x+2y^2-y-1=0\)
\(x^2+xy-2xy^2-x+2y^2-y-1=x^2-\left(2y^2-y-1\right)x+2y^2-y-1=0\)đặt 2y^2-y-1=z
y nguyên => z nguyên
<=>\(x^2-zx+z=0\Leftrightarrow z\left(x-1\right)=x^2\Rightarrow z=\frac{x^2}{x-1}\)
\(z=x+1+\frac{1}{x-1}\Rightarrow\left[\begin{matrix}x=0\\x=2\end{matrix}\right.\Rightarrow\left[\begin{matrix}z=0\\z=4\end{matrix}\right.\)
Với z=0
\(2y^2-y-1=0\Rightarrow\left[\begin{matrix}y=1\\y=\frac{-1}{2}\left(loai\right)\end{matrix}\right.\)
với z=4
\(2y^2-y-1=4\Rightarrow2y^2-y-5=0vonghiemnguyen\)
Kết luận:
x=0 và y=1 là nghiệm
a) Ta có: \(VT=\left(x-y-z\right)^2\)
\(=\left(x-y-z\right)\left(x-y-z\right)\)
\(=x^2-xy-xz-yx+y^2+yz-zx+zy+z^2\)
\(=x^2+y^2+z^2-2xy+2yz-2xz\)
=VP(đpcm)
b) Ta có: \(VT=\left(x+y-z\right)^2\)
\(=\left(x+y-z\right)\left(x+y-z\right)\)
\(=x^2+xy-xz+yx+y^2-yz-zx-zy+z^2\)
\(=x^2+y^2+z^2+2xy-2yz-2zx\)
=VP(đpcm)
c) Sửa đề: Chứng minh \(\left(x-y\right)\left(x^3+x^2y+xy^2+y^3\right)=x^4-y^4\)
Ta có: \(VT=\left(x-y\right)\left(x^3+x^2y+xy^2+y^3\right)\)
\(=x^4+x^3y+x^2y^2+xy^3-x^3y-x^2y^2-xy^3-y^4\)
\(=x^4-y^4\)
=VP(đpcm)
d) Ta có: \(VT=\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)\)
\(=x^5-x^4y+x^3y^2-x^2y^3+xy^4+x^4y-x^3y^2+x^2y^3-xy^4+y^5\)
\(=x^5+y^5\)
=VP(đpcm)
a, b, nhân vào là ra à
c, nghe cứ là lạ
d, cũng nhân là ra hà
\(=x^5-x^4y+x^3y^2-x^2y^3+xy^4+x^4y-x^3y^2+x^2y^3-xy^4+y^5=x^5+y^5\)
Bài 2:
a: \(3x^2-3xy=3x\left(x-y\right)\)
b: \(x^2-4y^2=\left(x-2y\right)\left(x+2y\right)\)
c: \(3x-3y+xy-y^2=\left(x-y\right)\left(3+y\right)\)
d: \(x^2-y^2+2y-1=\left(x-y+1\right)\left(x+y-1\right)\)
\(\Leftrightarrow\left(x^2+y^2+1-2xy+2x-2y\right)+\left(y^2-4y+4\right)=4\)
\(\Leftrightarrow\left(x-y+1\right)^2+\left(y-2\right)^2=4=2^2+0^2=0^2+2^2\)
\(\Rightarrow x;y\)
\(2xy^2+x+y-1=x^2+2y^2+xy\\\Leftrightarrow 2xy^2+x+y-1-x^2-2y^2-xy=0\\\Leftrightarrow(2xy^2-2y^2)-(xy-y)-(x^2-x)=1\\\Leftrightarrow2y^2(x-1)-y(x-1)-x(x-1)=1\\\Leftrightarrow(x-1)(2y^2-y-x)=1\)
Vì \(x,y\) nguyên \(\Rightarrow x-1;2y^2-y-x\) có giá trị nguyên
Mà: \(\left(x-1\right)\left(2y^2-y-x\right)=1\)
Do đó ta có các trường hợp xảy ra là:
\(+,\left\{{}\begin{matrix}x-1=1\\2y^2-y-x=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\2y^2-y-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\\left(2y-3\right)\left(y+1\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y\in\left\{\dfrac{3}{2};-1\right\}\end{matrix}\right.\)
Mà \(x,y\) nguyên nên: \(x=2;y=-1\)
\(+,\left\{{}\begin{matrix}x-1=-1\\2y^2-y-x=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\2y^2-y+1=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\2\left(y-\dfrac{1}{4}\right)^2+\dfrac{7}{8}=0\left(\text{vô lí}\right)\end{matrix}\right.\)
Vậy \(x=2;y=-1\) là các giá trị cần tìm.
\(\text{#}Toru\)
\(\left(xy-y\right)+\left(x^2-x\right)+\left(2y^2-2xy^2\right)=1\)
\(\left(x-1\right)y+\left(x-1\right)x-2y^2\left(x-1\right)=1\)
\(\left(x-1\right)\left(y+x-2y^2\right)=1\)
Giải hệ nghiệm nguyên
\(\left(I\right)\left\{\begin{matrix}x-1=1\\x+y-2y^2=1\end{matrix}\right.\Leftrightarrow\left\{\begin{matrix}x=2\\2y^2-y-1=0\end{matrix}\right.\left\{\begin{matrix}x=2\\y=\left\{1\right\}\end{matrix}\right.\)
\(\left(II\right)\left\{\begin{matrix}x-1=-1\\x+y-2y^2=-1\end{matrix}\right.\Leftrightarrow\left\{\begin{matrix}x=0\\2y^2-y-1=0\end{matrix}\right.\Rightarrow}\left\{\begin{matrix}x=0\\y=1\end{matrix}\right.\)Kết luận
(x,y)=(2,1); (0,1)