K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 2 2017

\(\left(xy-y\right)+\left(x^2-x\right)+\left(2y^2-2xy^2\right)=1\)

\(\left(x-1\right)y+\left(x-1\right)x-2y^2\left(x-1\right)=1\)

\(\left(x-1\right)\left(y+x-2y^2\right)=1\)

Giải hệ nghiệm nguyên

\(\left(I\right)\left\{\begin{matrix}x-1=1\\x+y-2y^2=1\end{matrix}\right.\Leftrightarrow\left\{\begin{matrix}x=2\\2y^2-y-1=0\end{matrix}\right.\left\{\begin{matrix}x=2\\y=\left\{1\right\}\end{matrix}\right.\)

\(\left(II\right)\left\{\begin{matrix}x-1=-1\\x+y-2y^2=-1\end{matrix}\right.\Leftrightarrow\left\{\begin{matrix}x=0\\2y^2-y-1=0\end{matrix}\right.\Rightarrow}\left\{\begin{matrix}x=0\\y=1\end{matrix}\right.\)Kết luận

(x,y)=(2,1); (0,1)

9 tháng 2 2017

\(x^2+xy-2xy^2-x+2y^2-y-1=0\)

\(x^2+xy-2xy^2-x+2y^2-y-1=x^2-\left(2y^2-y-1\right)x+2y^2-y-1=0\)đặt 2y^2-y-1=z

y nguyên => z nguyên

<=>\(x^2-zx+z=0\Leftrightarrow z\left(x-1\right)=x^2\Rightarrow z=\frac{x^2}{x-1}\)

\(z=x+1+\frac{1}{x-1}\Rightarrow\left[\begin{matrix}x=0\\x=2\end{matrix}\right.\Rightarrow\left[\begin{matrix}z=0\\z=4\end{matrix}\right.\)

Với z=0

\(2y^2-y-1=0\Rightarrow\left[\begin{matrix}y=1\\y=\frac{-1}{2}\left(loai\right)\end{matrix}\right.\)

với z=4

\(2y^2-y-1=4\Rightarrow2y^2-y-5=0vonghiemnguyen\)

Kết luận:

x=0 và y=1 là nghiệm

18 tháng 12 2017

Phân thức đại sốPhân thức đại số

7 tháng 12 2017

a,\(\frac{x^2+y^2-xy}{x^2-y^2}:\frac{x^3+y^3}{x^2+y^2-2xy} =\frac{x^2+y^2-xy}{(x-y)(x+y)}\frac{(x+y)^2}{(x+y) (x^2-xy+y^2)}=\frac{1}{x-y} \)

b,\(\frac{x^3y+xy^3}{x^4y}:(x^2+y^2)=\frac{xy(x^2+y^2)}{x^4y(x^2+y^2)}=\frac{1}{x^3} \)

c,\(\frac{x^2-xy}{y}:\frac{x^2-xy}{xy+y}:\frac{x^2-1}{x^2+y} =\frac{x(x-y)y(x+y)(x^2+y)}{yx(x-y)(x^2-1)} =\frac{(x^2+y)(x+y)}{x^2-1} \)

d,\(\frac{x^2+y}{y}:(\frac{z}{x^2}:\frac{xy}{x^2y})=\frac{x^2+y}{ y}:(\frac{z}{x^2}\frac{x^2y}{xy})=\frac{x^2+y}{y}\frac{z}{x} \)

17 tháng 8 2017

Sửa lại đề : tính \(A=\frac{yz}{x^2+2yz}+\frac{xz}{y^2+2xz}+\frac{xy}{z^2+2xy}\)

Từ \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Leftrightarrow\frac{xy+yz+xz}{xyz}=0\Rightarrow xy+yz+xz=0\)

\(\Rightarrow yz=-xy-xz\)

\(\Rightarrow x^2+2yz=x^2+yz-xy-xz=x\left(x-y\right)-z\left(x-y\right)=\left(x-z\right)\left(x-y\right)\)

CM tương tự ta cx có : \(\hept{\begin{cases}y^2+2xz=\left(y-x\right)\left(y-z\right)\\z^2+2xy=\left(z-x\right)\left(z-y\right)\end{cases}}\)

\(\Rightarrow A=\frac{yz}{\left(x-y\right)\left(x-z\right)}+\frac{xz}{\left(y-x\right)\left(y-z\right)}+\frac{xy}{\left(z-x\right)\left(z-y\right)}\)

\(=\frac{yz\left(y-z\right)-xz\left(x-z\right)+xy\left(x-y\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}\)

\(=\frac{yz\left(y-z\right)-xz\left(x-y-z+y\right)+xy\left(x-y\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}\)

\(=\frac{yz\left(y-z\right)+xz\left(z-y\right)-xz\left(x-y\right)+xy\left(x-y\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}\)

\(=\frac{\left(y-z\right)\left(yz-xz\right)+\left(x-y\right)\left(xy-xz\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}\)

\(=\frac{\left(y-z\right)\left(y-x\right)z+\left(x-y\right)\left(y-z\right)x}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}\)

\(=\frac{\left(y-z\right)\left(x-y\right)\left(x-z\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}=1\)

15 tháng 1 2019

Bài 2 :

a) \(P=x^2+y^2+xy+x+y\)

\(2P=2x^2+2y^2+2xy+2x+2y\)

\(2P=x^2+2xy+y^2+x^2+2x+1+y^2+2y+1-2\)

\(2P=\left(x+y\right)^2+\left(x+1\right)^2+\left(y+1\right)^2-2\)

\(P=\frac{\left(x+y\right)^2+\left(x+1\right)^2+\left(y+1\right)^2-2}{2}\)

\(P=\frac{\left(x+y\right)^2+\left(x+1\right)^2+\left(y+1\right)^2}{2}-1\le-1\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+y=0\\x+1=0\\y+1=0\end{cases}}\)

Mình nghĩ đề phải là tìm GTLN của \(P=x^2+y^2+xy+x-y\)hoặc đổi dấu x và y thì dấu "=" mới xảy ra đc

17 tháng 1 2019

@ Phương ơi ! Cái dòng \(P=\)cuối ấy . Chỗ đấy là \(\ge-1\)em nhé!