c/m M= (x^5)/30 - (x^3)/6 +(2x)/15 luôn nhận giá trị nguyên với mọi x thuộc Z
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\dfrac{x^5-5x^3+4x}{30}=\dfrac{x\left(x^4-5x^2+4\right)}{30}=\dfrac{x\left(x^2-1\right)\left(x^2-4\right)}{30}=\dfrac{x\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)}{30}=\dfrac{\left(x-2\right)\left(x-1\right)x\left(x+1\right)\left(x+2\right)}{30}\).
Xét x nguyên. Trong 5 số x - 2, x - 1, x, x + 1, x + 2 tồn tại 1 số chia hết cho 2, 1 số chia hết cho 3, 1 số chia hết cho 5.
Do đó (x - 2)(x - 1)x(x + 1)(x + 2) luôn nguyên với mọi x nguyên.
Mặt khác tồn tại 2 số trong 5 số x - 2, x - 1, x, x + 1, x + 2 chia hết cho 2 mà 30 chia hết cho 2 nhưng không chia hết cho 4 nên B chia hết cho 2.
Vậy B khác 17 với mọi x nguyên.
x đầu ở đa thức A là x^3 chăng?
a/ \(A=x^3-5x^2+8x-4\)
\(=\left(x^3-x^2\right)+\left(-4x^2+4\right)+\left(8x-8\right)\)
\(=x^2\left(x-1\right)-4\left(x-1\right)\left(x+1\right)+8\)
\(=\left(x-1\right)\left(x^2-4x-4\right)=\left(x-1\right)\left(x-2\right)^2\)
b/ \(B=\dfrac{x^5}{30}-\dfrac{x^3}{6}+\dfrac{2x}{15}\)
\(=\dfrac{x^5}{30}-\dfrac{5x^3}{30}+\dfrac{4x}{30}\)
\(=\dfrac{x\left(x^4-5x^2+4\right)}{30}\)
\(=\dfrac{x\left(x^4-x^2-4x^2+4\right)}{30}\)
\(=\dfrac{x\left(x+2\right)\left(x-1\right)\left(x+1\right)\left(x-2\right)}{30}\)
\(M=\frac{x^5}{30}-\frac{x^3}{6}+\frac{2x}{15}\)
\(=\frac{x^5}{30}-\frac{5x^3}{30}+\frac{4x}{30}\)
\(=\frac{x^5-5x^3+4x}{30}\)
\(=\frac{x\left(x^4-5x^2+4\right)}{30}\)
\(=\frac{x\left[\left(x^4-4x^2\right)-\left(x^2-4\right)\right]}{30}\)
\(=\frac{x\left[x^2\left(x^2-4\right)-\left(x^2-4\right)\right]}{30}\)
\(=\frac{x\left(x^2-1\right)\left(x^2-4\right)}{30}\)
\(=\frac{\left(x-2\right)\left(x-1\right)x\left(x+1\right)\left(x+2\right)}{30}\)
\(\left(x-2\right)\left(x-1\right)x\left(x+1\right)\left(x+2\right)\) là tích của 5 số tự nguyên liên tiếp nên chia hết cho 2 , 3 , 5.
Mà các số 2 , 3 , 5 nguyên tố với nhau từng đôi một nên \(\left(x-2\right)\left(x-1\right)x\left(x+1\right)\left(x+2\right)\)chia hết cho 2 . 3 .5 = 30
Do đó \(M\in Z\)
Vậy....
Ta có f(0)=a.0
2
+b.0+c=c=>c là số nguyên
f(1)=a.1
2
+b.1+c=a+b+c
Vì c là số nguyên=>a+b là số nguyên(1)
f(2)=a.2
2
+b.2+c=2.(2a+b)+c=>2.(2a+b)là số nguyên=>2a+b là số nguyên(2)
Từ (1)và(2)=>(2a+b)-(a+b)=2a+b-a-b=a là số nguyên=>a là số nguyên
Do a+b là số nguyên, mà a là số nguyên
=>b là số nguyên
Vậy f(x) luôn nhận giá trị nguyên với mọi x
\(M=\frac{4x+5}{2x+1}=\frac{4x+2+3}{2x+1}=\frac{2\left(2x+1\right)+3}{2x+1}=\frac{2\left(2x+1\right)}{2x+1}+\frac{3}{2x+1}=2+\frac{3}{2x+1}\)
Để M là số nguyên thì \(\frac{3}{2x+1}\) là số nguyên
=>3 chia hết cho 2x+1
=>2x+1\(\inƯ\left(3\right)\)
=>2x+1\(\in\left\{-3;-1;1;3\right\}\)
=>2x\(\in\left\{-4;-2;0;2\right\}\)
=>x\(\in\left\{-2;-1;0;1\right\}\)
ta có\(\frac{x^5}{30}-\frac{x^3}{6}+\frac{2x}{15}=\frac{x^5-5x^3+4x}{30}\)
ta có A=x^5-5x^3+4x=x(x^4-5x^2+4)
=x[x^4-4x^2+4-x^2]
=x[ (x^2-2)^2-x^2 ]
=x[ (x^2-2-x)(x^2-2+x)]
=x(x-2)(x+1)(x-1)(x+2)
do A là tích của 5 số nguyên liên tiếp nên chi hết cho 5
do A chứa tích của 3 số nguyên liên tiếp nên chia hết cho 3
do A chứa tích của 2 số nguyên liên tiếp nên chia hết cho 2
mà (2,3,5) Nguyên tố vs nhau từng đôi 1 nên A\(⋮\)2.3.5 <=> A chia hết cho 30 vậy M=A/30 luôn là số nguyên vs mọi x thuộc Z