Biết \(x^2-y^2=1.\) Gía trị của biểu thức :
\(A=2\left(x^6-y^6\right)-3\left(x^4+y^4\right)+1\) là A =
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo bài ra , ta có :
\(A=2\left(x^6-y^6\right)-3\left(x^4+y^4\right)+1\)
\(\Leftrightarrow A=2[\left(x^2\right)^3-\left(y^2\right)^3]-3\left(x^4+y^4\right)+1\)
\(\Leftrightarrow A=2\left(x^2-y^2\right)\left(x^4+x^2y^2+y^4\right)-3\left(x^4+y^4\right)+1\)
\(\Leftrightarrow A=2x^4+2x^2y^2+2y^4-3x^4-3y^4\)(Vì x2 - y2 = 1)
\(\Leftrightarrow A=-x^4+2x^2y^2-y^4+1=-\left(x^4-2x^2y^2+y^4\right)=-\left(\left(x^2-y^2\right)^2\right)=-1+1=0\)Vậy A = 0
Chúc bạn học tốt =))
\(A=\left(x+1\right)^3-\left(x+3\right)^2\left(x+1\right)+4x^2+8\)\(=\left(x+1\right)\left[\left(x+1\right)^2-\left(x+3\right)^2\right]+4x^2+8\)
\(=\left(x+1\right)\left(x+1+x+3\right)\left(x+1-x-3\right)+4x^2+8\)\(=\left(x+1\right)\left(2x+4\right).-2+4x^2+8=-2\left(2x^2+4x+2x+4\right)+4x^2+8=-4x^2-12x-8+4x^2+8=-12x\) Với \(x=\dfrac{-1}{6}\Rightarrow A=\left(-12\right).\left(\dfrac{-1}{6}\right)=2\)
a: \(A=x^3+3x^2+3x+1-\left(x^2+6x+9\right)\left(x+1\right)+4x^2+8\)
\(=x^3+7x^2+3x+9-x^3-x^2-6x^2-6x-9x-9\)
\(=-12x\)
\(=-12\cdot\dfrac{-1}{6}=2\)
b: Sửa đề: \(B=2\left(x^6+y^6\right)-3\left(x^4+y^4\right)\)
\(=2\left[\left(x^2+y^2\right)\left(x^4-x^2y^2+y^4\right)\right]-3\left(x^4+y^4\right)\)
\(=2x^4-2x^2y^2+2y^4-3x^4-3y^4\)
\(=-\left(x^4+2x^2y^2+y^4\right)=-1\)
Câu 1 :
\(\left(2x+y\right)\left(4x^2-2xy+y^2\right)=\left(2x\right)^3+y^3=8x^3+y^3\)Câu 2:
\(A=3\left(2x-3\right)\left(3x+2\right)-2\left(x+4\right)\left(4x-3\right)+9x\left(4-x\right)=0\)\(\Leftrightarrow3\left(6x^2-2x-6\right)-2\left(4x^2+13x-12\right)+36x-9x^2=0\)\(\Leftrightarrow18x^2-6x-18-8x^2-26x+24+36x-9x^2=0\)\(\Leftrightarrow x^2+4x+6=0\)
\(\Leftrightarrow\left(x+2\right)^2=-2\)
Ta có:
\(\left(x+2\right)^2\ge0\forall x\)
Vậy pt vô nghiệm
Vậy:ko......
Câu 3:
\(\left(5x-3\right)\left(7x+2\right)-35x\left(x-1\right)=42\)
\(\Leftrightarrow35x^2+10x-21x-6-35x^2+35x-42=0\)\(\Leftrightarrow14x=48\Leftrightarrow x=\dfrac{7}{24}\)
Câu 4:
\(\left(3x+5\right)\left(2x-1\right)+\left(5-6x\right)\left(x+2\right)=x\)
\(\Leftrightarrow6x^2-3x+10x-5+5x+10-6x^2-12x-x=0\)\(\Leftrightarrow-x=-5\Rightarrow x=5\)
câu 6,
Câu 6: \(\left(10x+9\right)x-\left(5x-1\right)\left(2x+3\right)=8\)
\(\Rightarrow10x^2+9x-\left(10x^2-2x+15x-3\right)=8\)
\(\Rightarrow10x^2+9x-10x^2+2x-15x+3=8\)
\(\Rightarrow-4x+3=8\)
\(\Rightarrow-4x=5\Rightarrow x=\dfrac{-5}{4}\)
Câu 7: \(x\left(x+1\right)\left(x+6\right)-x^3=5x\)
\(\Rightarrow\left(x^2+x\right)\left(x+6\right)-x^3=5x\)
\(\Rightarrow x^3+x^2+6x^2+6x-x^3=5x\)
\(\Rightarrow7x^2=-x\)
\(\Rightarrow7x=-1\Rightarrow x=\dfrac{-1}{7}\).
a, Với x = 3 và y = -2 ta có:
\(A=\dfrac{3}{2}+\dfrac{4}{9}.\left(6-\left|3\right|\right)+\left(-2\right)\)
\(A=\dfrac{3}{2}+\dfrac{4}{9}.\left(6-3\right)-2\)
\(A=\dfrac{3}{2}+\dfrac{4}{9}.3-2\)
\(A=\dfrac{3}{2}+\dfrac{4}{3}-2\)
\(A=\dfrac{5}{6}\)
Với x = 3 và y = -3 ta có:
\(B=\left|2.3-1\right|+\left|3.\left(-3\right)+2\right|\)
\(B=\left|5\right|+\left|-7\right|\)
\(B=5+7=12\)
Hoctot ! ko hiểu chỗ nào cứ hỏi cj nhé
Ta có :
+ ) \(x^2-y^2=1\)
\(\Rightarrow\left(x^2-y^2\right)^3=1^3\)
\(\Rightarrow x^2-y^6-3x^2y^2\left(x^2-y^2\right)=1\)
\(\Rightarrow x^6-y^6=1+3x^2y^2\left(x^2-y^2\right)\)
\(\Rightarrow x^6-y^6=1+3x^2y^2\)
+ ) \(x^2-y^2=1\)
\(\Rightarrow\left(x^2-y^2\right)^2=1^2\)
\(\Rightarrow x^4-2x^2y^2+y^4=1\)
\(\Rightarrow x^4+y^4=1+2x^2y^2\)
Khi đó :
\(A=2\left(x^6-y^6\right)-3\left(x^4+y^4\right)+1\)
\(=2\left(1+3x^2y^2\right)-3\left(1+2x^2y^2\right)+1\)
\(=0\)
Vậy \(A=0\).