Tìm GTNN
a, |x-3|+10
b, -7+(x-1)^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) A = |x - 3| + 10
Vì |x - 3| >= 0
=> A = |x - 3| + 10 >= 10
A = 10 <=> |x - 3| = 0=> x - 3 = 0 => x = 3
Vậy: Amin = 10 <=> x = 3
b) B = -7 + (x - 1)2
Vì (x - 1)2 >= 0
=> B = -7 + (x - 1)2 >= -7
B = -7 <=> (x - 1)2 = 0 => x - 1 = 0 => x = 1
Vậy: Bmin = -7 <=> x = 1
Trả lời:
a, \(A=x^2-6x+15=\left(x^2-6x+9\right)+6=\left(x-3\right)^2+6\ge6\forall x\)\(6\forall x\)
Dấu "=" xảy ra khi x - 3 = 0 <=> x = 3
Vậy GTNN của A = 6 khi x = 3
b, \(B=x^2+5x+7=\left(x^2+2.x.\frac{5}{2}+\frac{25}{4}\right)+\frac{3}{4}=\left(x+\frac{5}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)
Dấu "=" xảy ra khi \(x+\frac{5}{2}=0\Leftrightarrow x=-\frac{5}{2}\)
Vậy GTNN của B = 3/4 khi x = - 5/2
c, \(C=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)+10\)
\(=\left[\left(x+1\right)\left(x+4\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]+10\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)+10\)
Đặt \(x^2+5x+4=t\)
\(\Rightarrow\left(x^2+5x+4\right)\left(x^2+5x+6\right)+10=t\left(t+2\right)+10\)
\(=t^2+2t+10=\left(t^2+2t+1\right)+9=\left(t+1\right)^2+9\ge9\forall t\)
Dấu "=" xảy ra khi \(t+1=0\Leftrightarrow t=-1\)
hay \(x^2+5x+4=-1\)
\(\Leftrightarrow x^2+5x+5=0\)
\(\Leftrightarrow4\left(x^2+5x+5\right)=0\)
\(\Leftrightarrow4x^2+20x+20=0\)
\(\Leftrightarrow\left(4x^2+20x+25\right)-5=0\)
\(\Leftrightarrow\left(2x+5\right)^2-5=0\)
\(\Leftrightarrow\left(2x+5-\sqrt{5}\right)\left(2x+5+\sqrt{5}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x+5-\sqrt{5}=0\\2x+5+\sqrt{5}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{-5+\sqrt{5}}{2}\\x=\frac{-5-\sqrt{5}}{2}\end{cases}}}\)
Vậy GTNN của C = 9 khi \(\orbr{\begin{cases}x=\frac{-5+\sqrt{5}}{2}\\x=\frac{-5-\sqrt{5}}{2}\end{cases}}\)
\(A=x^2-6x+10\)
\(\Leftrightarrow A=x^2-2\cdot x\cdot3+3^2-9+10\)
\(\Leftrightarrow A=\left(x-3\right)^2+1\ge1\) \(\forall x\in z\)
\(\Leftrightarrow A_{min}=1khix=3\)
\(B=3x^2-12x+1\)
\(\Leftrightarrow B=\left(\sqrt{3}x\right)^2-2\cdot\sqrt{3}x\cdot2\sqrt{3}+\left(2\sqrt{3}\right)^2-12+1\)
\(\Leftrightarrow B=\left(\sqrt{3}x-2\sqrt{3}\right)^2-11\ge-11\) \(\forall x\in z\)
\(\Leftrightarrow B_{min}=-11khix=2\)
1.
$x(x+2)(x+4)(x+6)+8$
$=x(x+6)(x+2)(x+4)+8=(x^2+6x)(x^2+6x+8)+8$
$=a(a+8)+8$ (đặt $x^2+6x=a$)
$=a^2+8a+8=(a+4)^2-8=(x^2+6x+4)^2-8\geq -8$
Vậy $A_{\min}=-8$ khi $x^2+6x+4=0\Leftrightarrow x=-3\pm \sqrt{5}$
2.
$B=5+(1-x)(x+2)(x+3)(x+6)=5-(x-1)(x+6)(x+2)(x+3)$
$=5-(x^2+5x-6)(x^2+5x+6)$
$=5-[(x^2+5x)^2-6^2]$
$=41-(x^2+5x)^2\leq 41$
Vậy $B_{\max}=41$. Giá trị này đạt tại $x^2+5x=0\Leftrightarrow x=0$ hoặc $x=-5$
\(A=x^2-2x+10\)
\(A=\left(x^2-2x+1\right)+9\)
\(A=\left(x-1\right)^2+9\)
Mà \(\left(x-1\right)^2\ge0\)
\(\Rightarrow A\ge9\)
Dấu "=" xảy ra khi :
\(x-1=0\Leftrightarrow x=1\)
Vậy Min A = 9 khi x = 1
\(B=x^2-5x-7\)
\(B=\left(x^2-5x+\frac{25}{4}\right)-\frac{53}{4}\)
\(B=\left(x-\frac{5}{2}\right)^2-\frac{53}{4}\)
Mà \(\left(x-\frac{5}{2}\right)^2\ge0\)
\(\Rightarrow B\ge-\frac{53}{4}\)
Dấu "=" xảy ra khi :
\(x-\frac{5}{2}=0\Leftrightarrow x=\frac{5}{2}\)
Vậy \(B_{Min}=-\frac{53}{4}\Leftrightarrow x=\frac{5}{2}\)
Trả lời:
1, A = | x - 3 | + 10
Vì \(\left|x-3\right|\ge0\forall x\)
nên \(\left|x-3\right|+10\ge10\forall x\)
Dấu = xảy ra khi x - 3 = 0 <=> x = 3
Vậy GTNN của A = 10 khi x = 3
B = -7 + ( x + 1 )2
Vì \(\left(x+1\right)^2\ge0\forall x\)
nên \(-7+\left(x+1\right)^2\ge-7\forall x\)
Dấu = xảy ra khi x + 1 = 0 <=> x = -1
Vậy GTNN của B = -7 khi x = -1
2, C = -3 - | x + 2 |
Vì \(\left|x+2\right|\ge0\forall x\)
=> \(-\left|x+2\right|\le0\forall x\)
=> \(-3-\left|x+2\right|\le-3\forall x\)
Dấu = xảy ra khi x + 2 = 0 <=> x = -2
Vậy GTLN của C = -3 khi x = -2
D = 15 - ( x - 2 )2
VÌ \(\left(x-2\right)^2\ge0\forall x\)
=> \(-\left(x-2\right)^2\le0\forall x\)
=> \(15-\left(x-2\right)^2\le15\forall x\)
Dấu = xảy ra khi x - 2 = 0 <=> x = 2
Vậy GTLN của D = 15 khi x = 2
gtnn là gì
GTNN là giá trị nhỏ nhất