tìm GTLN
\(B=\frac{\left|2y+7\right|+13}{2\left|2y+7\right|+6}\)
Mình đag cần gấp. mọi ng giúp mình vớiiiii ak
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{2\left|x+5\right|+11}{\left|x+5\right|+4}=\frac{2\left|x+5\right|+8+3}{\left|x+5\right|+4}=2+\frac{3}{\left|x+5\right|+4}\)
Ta có : \(\left|x+5\right|+4\ge4\Rightarrow\frac{3}{\left|x+5\right|+4}\le\frac{3}{4}\)
\(\Rightarrow A=2+\frac{3}{\left|x+5\right|+4}\le2+\frac{3}{4}=\frac{11}{4}\)
Dấu ''='' xảy ra khi x = -5
Vậy GTLN của A bằng 11/4 tại x = -5
Ta có \(\hept{\begin{cases}\left|x-y+2\right|\ge0\forall x;y\\\left|2y+1\right|\ge0\forall x;y\end{cases}}\Leftrightarrow\left|x-y+2\right|+\left|2y+1\right|\ge0\forall x;y\)
Kết hợp đề bài
=> \(\left|x-y+2\right|+\left|2y+1\right|=0\)
=> \(\hept{\begin{cases}x-y+2=0\\2y+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{5}{2}\\x=-\frac{1}{2}\end{cases}}\)
Vậy x = -5/2 ; y = -1/2
\(D=\left|x+3\right|+\left|x-2\right|+7=\left|x+3\right|+\left|2-x\right|+7\ge\left|x+3+2-x\right|+7=12\)
Dấu ''='' xảy ra khi \(\left(x+3\right)\left(2-x\right)\ge0\Leftrightarrow-3\le x\le2\)
Vậy GTNN của D bằng 12 tại -3 =< x =< 2
c) Ta có: \(\left\{{}\begin{matrix}\dfrac{x+2}{x+1}+\dfrac{2}{y-2}=6\\\dfrac{5}{x+1}-\dfrac{1}{y-2}=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x+1}+\dfrac{2}{y-2}=5\\\dfrac{5}{x+1}-\dfrac{1}{y-2}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{x+1}+\dfrac{10}{y-2}=25\\\dfrac{5}{x+1}-\dfrac{1}{y-2}=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{11}{y-2}=22\\\dfrac{1}{x+1}+\dfrac{2}{y-2}=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y-2=\dfrac{1}{2}\\\dfrac{1}{x+1}=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+1=1\\y-2=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=\dfrac{5}{2}\end{matrix}\right.\)
\(B=\frac{\left|2y+7\right|+13}{2\left|2y+7\right|+6}=\frac{\left|2y+7\right|+3+10}{2\left|2y+7\right|+6}=\frac{1}{2}+\frac{10}{2\left|2y+7\right|+6}\)
Ta có : \(2\left|2y+7\right|+6\ge6\Rightarrow\frac{10}{2\left|2y+7\right|+6}\le\frac{10}{6}=\frac{5}{3}\)
\(\Rightarrow B=\frac{1}{2}+\frac{10}{2\left|2y+7\right|+6}\le\frac{1}{2}+\frac{5}{3}=\frac{13}{6}\)
Dấy ''='' xảy ra khi y = -7/2
Vậy GTLN của B bằng 13/6 tại y = -7/2
cảm ơn b nhìu