Bài1: Tìm số nguyên n, biết
a) n - 4 chia hết cho n -1
b) 2n là bội của n - 2
c) n + 1 là ước của n2 + 7
Bài 2: Chứng minh rằng 6x + 11y chia hết cho 31 thì x + 7y cũng chia hết cho 31.
Bài 3: Cho a > b, tính | S | biết: S = - ( a - b - c) +x( - c + b + a) - (a + b)
Bài 4: Cho M = ( - a + b) - (b + c - a) + ( c - a), trong đó b, c thuộc Z còn a là một số nguyên âm. Chứng minh rằng biểu thức M luôn dương.
Bài 5: Tìm x thuộc Z biết 2\(\le\)|x|\(\le\)5
Bài 6: Tìm 2 số nguyên mà tích của chúng bằng hiệu của chúng.
Bài 6:
Gọi 2 số nguyên đó lần lượt là a và b \(\left(a,b\in Z\right)\)
Ta có:
\(ab=a-b\Leftrightarrow ab+b=a\)
\(\Leftrightarrow b\left(a+1\right)=a\Leftrightarrow b=\frac{a}{a+1}\left(a+1\ne0\Leftrightarrow a\ne-1\right)\)
Lại có: \(\frac{a}{a+1}=\frac{a+1-1}{a+1}=\frac{a+1}{a+1}-\frac{1}{a+1}=1-\frac{1}{a+1}\)
\(\Rightarrow1⋮a+1\Rightarrow a+1\inƯ\left(1\right)=\left\{1;-1\right\}\)
\(\Rightarrow a\in\left\{0;-2\right\}\) (thỏa mãn)
*)Xét \(a=0\)\(\Leftrightarrow b=\frac{a}{a+1}=\frac{0}{0+1}=0\) (thỏa mãn)
*)Xét \(a=-2\)\(\Leftrightarrow b=\frac{a}{a+1}=\frac{-2}{-2+1}=2\) (thỏa mãn)
Bài1: Tìm số nguyên n, biết
a) n - 4 chia hết cho n -1 (n khác 1)
\(\frac{n-4}{n-1}=\frac{n-1-3}{n-1}=1-\frac{3}{n-1}\)
Để \(\frac{n-4}{n-1}\in Z\) thì \(n-1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\Leftrightarrow n\in\left\{0;2:-2;4\right\}\)
b) 2n là bội của n - 2 (n khác 2)
Để \(2n⋮n-2\) thì \(n-2\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\Leftrightarrow n\in\left\{1;3;0;4\right\}\)