K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2021

\(\left(x+2\right)\left(x^2-2x+1\right)+\left(1-x\right)\left(1+x+x^2\right)\)

\(=\left(x+2\right)\left(x-1\right)^2-\left(x-1\right)\left(1+x+x^2\right)\)

\(=\left(x-1\right)\left[\left(x+2\right)\left(x-1\right)-\left(1+x+x^2\right)\right]\)

\(=\left(x-1\right)\left(x^2+x-2-1-x-x^2\right)\)

\(=-3\left(x-1\right)\) \(=3\left(1-x\right)\)

14 tháng 12 2021

\(=\dfrac{2x^2-x-x-1+2-x^2}{x-1}=\dfrac{x^2-2x+1}{x-1}=\dfrac{\left(x-1\right)^2}{x-1}=x-1\)

16 tháng 11 2021

\(a,\Leftrightarrow\left(5x+1\right)\left(x-4\right)-\left(x-4\right)=0\\ \Leftrightarrow\left(x-4\right)\left(5x+1-x\right)=0\\ \Leftrightarrow5x\left(x-4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\\ b,\Leftrightarrow2x^2-10x-2x^2-3x=26\\ \Leftrightarrow-13x=26\\ \Leftrightarrow x=-2\\ c,\Leftrightarrow x^3+1-x^3+3x=15\\ \Leftrightarrow3x=14\\ \Leftrightarrow x=\dfrac{14}{3}\)

\(d,\Leftrightarrow x^3-5x+2x^2-10+5x-2x^2-17=0\\ \Leftrightarrow x^3-27=0\\ \Leftrightarrow x^3=27\\ \Leftrightarrow x=3\)

1 tháng 10 2021

\(a,\Leftrightarrow\left|x+\dfrac{2}{5}\right|=\dfrac{7}{4}\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{2}{5}=\dfrac{7}{4}\left(x\ge-\dfrac{2}{5}\right)\\x+\dfrac{2}{5}=-\dfrac{7}{4}\left(x< -\dfrac{2}{5}\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{27}{20}\left(tm\right)\\x=-\dfrac{43}{20}\left(tm\right)\end{matrix}\right.\)

\(b,\Leftrightarrow\left|x-\dfrac{13}{10}\right|=\dfrac{13}{10}\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{13}{10}=\dfrac{13}{10}\left(x\ge\dfrac{13}{10}\right)\\x-\dfrac{13}{10}=-\dfrac{13}{10}\left(x< \dfrac{13}{10}\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{13}{5}\left(tm\right)\\x=0\left(tm\right)\end{matrix}\right.\)

\(c,\Leftrightarrow\left|\dfrac{3}{4}-\dfrac{1}{2}x\right|=\dfrac{1}{2}\Leftrightarrow\left[{}\begin{matrix}\dfrac{3}{4}-\dfrac{1}{2}x=\dfrac{1}{2}\left(x\le\dfrac{3}{2}\right)\\\dfrac{1}{2}x-\dfrac{3}{4}=\dfrac{1}{2}\left(x>\dfrac{3}{2}\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\left(tm\right)\\x=\dfrac{5}{2}\left(tm\right)\end{matrix}\right.\)

\(d,\Leftrightarrow\left|5-2x\right|=4\Leftrightarrow\left[{}\begin{matrix}5-2x=4\left(x\le\dfrac{5}{2}\right)\\2x-5=4\left(x>\dfrac{5}{2}\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\left(tm\right)\\x=\dfrac{9}{2}\left(tm\right)\end{matrix}\right.\)

\(đ,\Leftrightarrow\left\{{}\begin{matrix}x-3,5=0\\x-1,3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3,5\\x=1,3\end{matrix}\right.\left(vô.lí\right)\Leftrightarrow x\in\varnothing\)

\(e,\Leftrightarrow\left\{{}\begin{matrix}x-2021=0\\x-2022=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2021\\x=2022\end{matrix}\right.\left(vô.lí\right)\Leftrightarrow x\in\varnothing\)

\(f,\Leftrightarrow\left|x\right|=\dfrac{1}{3}-x\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}-x\left(x\ge0\right)\\x=x-\dfrac{1}{3}\left(x< 0\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{6}\left(tm\right)\\0x=-\dfrac{1}{3}\left(vô.lí\right)\end{matrix}\right.\Leftrightarrow x=\dfrac{1}{6}\)

\(g,\Leftrightarrow\left[{}\begin{matrix}x-2=x\left(x\ge2\right)\\2-x=x\left(x< 2\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}0x=2\left(vô.lí\right)\\x=1\left(tm\right)\end{matrix}\right.\Leftrightarrow x=1\)

f: Ta có: \(\left(x+1\right)\left(x-2\right)-\left(2-x\right)\left(3-x\right)>0\)

\(\Leftrightarrow x^2-2x+x-2-\left(x-2\right)\left(x-3\right)>0\)

\(\Leftrightarrow x^2-x-2-x^2+5x-6>0\)

\(\Leftrightarrow4x>8\)

hay x>2

g: Ta có: \(\left(2x-1\right)^2\le2\left(x-1\right)^2\)

\(\Leftrightarrow4x^2-4x+1-2x^2+4x-2\le0\)

\(\Leftrightarrow2x^2\le1\)

\(\Leftrightarrow x^2\le\dfrac{1}{2}\)

\(\Leftrightarrow-\dfrac{\sqrt{2}}{2}\le x\le\dfrac{\sqrt{2}}{2}\)

29 tháng 9 2019

Tìm kiểu gì ạ?

7 tháng 3 2022

(2x - 1)^2 + (x + 3)^2 - 5(x + 7)(x - 7) = 0
<=>4x^2-4x+1+x^2+6x+9-5x^2+245=0
<=>2x+255=0
<=>2x=-255
<=>x=-255/2

11 tháng 8 2023

\(A=\dfrac{x^2+x}{x^2-2x+1}:\left(\dfrac{x+1}{x}-\dfrac{1}{1-x}+\dfrac{2-x^2}{x^2-x}\right)\left(1\right)\)

a) A xác định \(\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\x\ne1\end{matrix}\right.\)

\(\left(1\right)\Rightarrow A=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}:\left(\dfrac{x+1}{x}+\dfrac{1}{x-1}+\dfrac{2-x^2}{x\left(x-1\right)}\right)\)

\(\Rightarrow A=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}:\left(\dfrac{\left(x+1\right)\left(x-1\right)+x+2-x^2}{x\left(x-1\right)}\right)\)

\(\Rightarrow A=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}:\left(\dfrac{x^2-1+x+2-x^2}{x\left(x-1\right)}\right)\)

\(\Rightarrow A=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}:\left(\dfrac{x+1}{x\left(x-1\right)}\right)\)

\(\Rightarrow A=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}.\dfrac{x\left(x-1\right)}{x+1}=\dfrac{x^2}{x+1}\)

b) Để \(A=-\dfrac{1}{2}\)

\(\Leftrightarrow\dfrac{x^2}{x+1}=-\dfrac{1}{2}\left(x\ne-1\right)\)

\(\Leftrightarrow2x^2=-\left(x+1\right)\)

\(\Leftrightarrow2x^2+x+1=0\)

\(\Delta=1-8=-7< 0\)

Nên phương trình trên vô nghiệm \(\left(x\in\varnothing\right)\)

c) Để \(A< 1\) 

\(\Leftrightarrow\dfrac{x^2}{x+1}< 1\)

\(\Leftrightarrow x^2< x+1\left(x\ne-1\right)\)

\(\Leftrightarrow x^2-x-1< 0\)

\(\Leftrightarrow x^2-x+\dfrac{1}{4}-\dfrac{1}{4}-1< 0\)

\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2-\dfrac{5}{4}< 0\)

\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2< \dfrac{5}{4}\)

\(\Leftrightarrow-\dfrac{\sqrt[]{5}}{2}< x-\dfrac{1}{2}< \dfrac{\sqrt[]{5}}{2}\)

\(\Leftrightarrow\dfrac{-\sqrt[]{5}+1}{2}< x< \dfrac{\sqrt[]{5}+1}{2}\)

d) Để A nguyên

\(\Leftrightarrow\dfrac{x^2}{x+1}\in Z\)

\(\Leftrightarrow x^2⋮x+1\)

\(\Leftrightarrow x^2-x\left(x+1\right)⋮x+1\)

\(\Leftrightarrow x^2-x^2+x⋮x+1\)

\(\Leftrightarrow x⋮x+1\)

\(\Leftrightarrow x-x-1⋮x+1\)

\(\Leftrightarrow-1⋮x+1\)

\(\Leftrightarrow x+1\in\left\{-1;1\right\}\)

\(\Leftrightarrow x\in\left\{-2;0\right\}\left(x\in Z\right)\)

11 tháng 8 2023

!ERROR 404!

2 tháng 9 2021

Các bạn ơi giúp mình đi , minh đang cần gấp

3 tháng 9 2021

\(-3x\left(x+2\right)^2+\left(x+3\right)\left(x-1\right)\left(x+1\right)-\left(2x-3\right)^2\)

\(=-3x\left(x^2+4x+4\right)+\left(x+3\right)\left(x^2-1\right)-\left(4x^2-12x+9\right)\)

\(=-3x^3-12x^2-12x+x^3-x+3x^2-3-4x^2+12x-9\)

\(=-2x^3-13x^2-x-12\)