Tìm số nguyên x, y biết:
7) xy + y + x + 1 = 5
8) xy - y + x - 1 = 7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)(x-3).(y-5)=7=1.7=7.1=-1.7=7.(-1)=-7.1=1.(-7)=-1.(-7)=-7.(-1)
sau tự tính nha
nhớ tích cho mk
a: \(\Leftrightarrow\left(x+3;y-2\right)\in\left\{\left(1;7\right);\left(7;1\right);\left(-1;-7\right);\left(-7;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(-2;9\right);\left(4;3\right);\left(-4;-5\right);\left(-10;1\right)\right\}\)
b: (x+1)(xy+2)=5
=>\(\left(x+1;xy+2\right)\in\left\{\left(1;5\right);\left(5;1\right);\left(-1;-5\right);\left(-5;-1\right)\right\}\)
=>\(\left(x,xy\right)\in\left\{\left(0;3\right);\left(4;-1\right);\left(-2;-7\right);\left(-6;-3\right)\right\}\)
mà x,y là số nguyên
nên (x,y)=\(\varnothing\)
câu1
(x-3)(y-5)=7=1.7=7.1=-7.(-1)=(-1)(-7)
nếu x-3=1;y-5=7 thì x=1+3=4;y=12
nếu x-3=7;y-5=1 thì x=10;y=6
nếu....
vậy...
câu 2
(x-1)(xy-5)=5
=>x-1;xy-5 \(\in\) Ư(5) mà (x-1)(xy-5)=5.1=1.5=-5.(-1)=(-1)(-5)
ta có bảng sau
x-1 | 1 | 5 | -1 | -5 |
x | 2 | 6 | 0 | -4 |
xy-5 | 5 | 1 | -5 | -1 |
y | 5 | 1 | 0 | 1 |
vậy...
a, 3x ( y+1) + y + 1 = 7
(y+1)(3x +1) =7
th1 : \(\left\{{}\begin{matrix}y+1=1\\3x+1=7\end{matrix}\right.\) => \(\left\{{}\begin{matrix}y=0\\x=2\end{matrix}\right.\)
th2: \(\left\{{}\begin{matrix}y+1=-1\\3x+1=-7\end{matrix}\right.\)=> x = -8/3 (loại)
th3: \(\left\{{}\begin{matrix}y+1=7\\3x+1=1\end{matrix}\right.\)=> \(\left\{{}\begin{matrix}y=6\\x=0\end{matrix}\right.\)
th 4 : \(\left\{{}\begin{matrix}y+1=-7\\3x+1=-1\end{matrix}\right.\)=> x=-2/3 (loại)
Vậy (x,y)= (2 ;0); (0; 6)
b, xy - x + 3y - 3 = 5
(x( y-1) + 3( y-1) = 5
(y-1)(x+3) = 5
th1: \(\left\{{}\begin{matrix}y-1=1\\x+3=5\end{matrix}\right.\) => \(\left\{{}\begin{matrix}y=2\\x=8\end{matrix}\right.\)
th2: \(\left\{{}\begin{matrix}y-1=-1\\x+3=-5\end{matrix}\right.\) => \(\left\{{}\begin{matrix}y=0\\x=-8\end{matrix}\right.\)
th3: \(\left\{{}\begin{matrix}y-1=5\\x+3=1\end{matrix}\right.\) => \(\left\{{}\begin{matrix}y=6\\x=-2\end{matrix}\right.\)
th4: \(\left\{{}\begin{matrix}y-1=-5\\x+3=-1\end{matrix}\right.\) => \(\left\{{}\begin{matrix}y=-4\\x=-4\end{matrix}\right.\)
vậy (x, y) = ( 8; 2); ( -8; 0); (-2; 6); (-4; -4)
c, 2xy + x + y = 7 => y = \(\dfrac{7-x}{2x+1}\) ; y ϵ Z ⇔ 7-x ⋮ 2x+1
⇔ 14 - 2x ⋮ 2x + 1 ⇔ 15 - 2x - 1 ⋮ 2x + 1
th1 : 2x + 1 = -1=> x = -1; y = \(\dfrac{7-(-1)}{-1.2+1}\) = -8
th2: 2x+ 1 = 1=> x =0; y = 7
th3: 2x+1 = -3 => x = x=-2 => y = \(\dfrac{7-(-2)}{-2.2+1}\) = -3
th4: 2x+ 1 = 3 => x = 1 => y = \(\dfrac{7+1}{2.1+1}\) = 2
th5: 2x + 1 = -5 => x = -3=> y = \(\dfrac{7-(-3)}{-3.2+1}\) = -2
th6: 2x + 1 = 5 => x = 2; ; y = \(\dfrac{7-2}{2.2+1}\) =1
th7 : 2x + 1 = -15 => x = -8; y = \(\dfrac{7-(-8)}{-8.2+1}\) = -1
th8 : 2x+1 = 15 => x = 7; y = \(\dfrac{7-7}{2.7+1}\) = 0
kết luận
(x,y) = (-1; -8); (0 ;7); ( -2; -3) ; ( 1; 2); ( -3; -2); (2;1); (-8;-1);(7;0)
3xy−2x+5y=293xy−2x+5y=29
9xy−6x+15y=879xy−6x+15y=87
(9xy−6x)+(15y−10)=77(9xy−6x)+(15y−10)=77
3x(3y−2)+5(3y−2)=773x(3y−2)+5(3y−2)=77
(3y−2)(3x+5)=77(3y−2)(3x+5)=77
⇒(3y−2)⇒(3y−2) và (3x+5)(3x+5) là Ư(77)=±1,±7,±11,±77Ư(77)=±1,±7,±11,±77
Ta có bảng giá trị sau:
Do x,y∈Zx,y∈Z nên (x,y)∈{(−4;−3),(−2;−25),(2;3),(24;1)}
\(xy+y+x+1=5\)
\(\Leftrightarrow y\left(x+1\right)+\left(x+1\right)=5\)
\(\Leftrightarrow\left(y+1\right)\left(x+1\right)=5\)
=> y + 1 và x + 1 \(\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Ta có bảng:
Vậy các cặp (x;y) là (-2;-6) ; (0;4) ; (-6;-2) ; (4;0)
\(xy-y+x-1=7\)
\(\Leftrightarrow y\left(x-1\right)+\left(x-1\right)=7\)
\(\Leftrightarrow\left(y+1\right)\left(x-1\right)=7\)
=> y + 1 và x - 1 \(\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
Ta có bảng:
Vậy các cặp (x;y) là (0;-8) ; (2;6) ; (-6;-2) ; (8;0)
a, \(x.y+y+x+1=5\Leftrightarrow x\left(y+1\right)+x+1=5\)
\(\Leftrightarrow x\left(y+1\right)+x=4\Leftrightarrow x\left(y+2\right)=4\)
\(\Rightarrow x;y+2\inƯ\left(4\right)\Rightarrow x;y+2\in\left\{\pm1;\pm2;\pm4\right\}\)
Vậy các cặp số nguyên (x;y) thỏa mãn là (1;2);(2;0);(4;-1);(-1;-6);(-2;-4);(-4;-3)
b, \(x.y-y+x-1=7\Leftrightarrow x\left(y-1\right)+x-1=7\)
\(\Leftrightarrow x\left(y-1\right)+x=8\Leftrightarrow x.y=8\)
\(\Rightarrow x;y\inƯ\left(8\right)\Rightarrow x;y\in\left\{\pm1;\pm2;\pm4;\pm8\right\}\)
Vậy ...