K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: \(-x^2+4x+5\)

\(=-\left(x^2-4x-5\right)\)

\(=-\left(x^2-4x+4-9\right)\)

\(=-\left(x-2\right)^2+9\le9\forall x\)

Dấu '=' xảy ra khi x=2

b: Ta có: \(-x^2-7x+4\)

\(=-\left(x^2+7x-4\right)\)

\(=-\left(x^2+2\cdot x\cdot\dfrac{7}{2}+\dfrac{49}{4}-\dfrac{65}{4}\right)\)

\(=-\left(x+\dfrac{7}{2}\right)^2+\dfrac{65}{4}\le\dfrac{65}{4}\forall x\)

Dấu '=' xảy ra khi \(x=-\dfrac{7}{2}\)

10 tháng 8 2021

Cảm ơn bn nhiều

1 tháng 7 2016

\(a,A=4-x^2+2x=4-\left(x^2-2x\right)=4-\left(x^2-2x+1-1\right)\)

\(=4-\left[\left(x-1\right)^2-1\right]=4-\left(x-1\right)^2+1=5-\left(x-1\right)^2\)

\(\left(x-1\right)^2\ge0=>-\left(x-1\right)^2\le0=>5-\left(x-1\right)^2\le5\) (với mọi x)

Dấu "=" xảy ra \(< =>\left(x-1\right)^2=0< =>x=1\)

Vậy MaxA=5 khi x=1

\(b,B=4x-x^2=-x^2+4x=-\left(x^2-4x\right)=-\left(x^2-4x+4-4\right)\)

\(=-\left[\left(x-2\right)^2-4\right]=-\left(x-2\right)^2+4=4-\left(x-2\right)^2\)

\(\left(x-2\right)^2\ge0=>-\left(x-2\right)^2\le0=>4-\left(x-2\right)^2\le4\) (với mọi x)

Dấu "=" xảy ra \(< =>\left(x-2\right)^2=0< =>x=2\)

Vậy MaxB=4 khi x=2

a) \(4-x^2+2x\)

\(=-\left(x^2-2x-4\right)\)

\(=-\left(x^2-2x+1-5\right)\)

\(=-\left(\left(x-1\right)^2-5\right)\)

\(=5-\left(x-1\right)^2\ge5\)

MIn A = 5 khi \(x-1=0=>x=1\)

b) \(4x-x^2\)

\(=-\left(x^2-4x+4-4\right)\)

\(=>-\left(\left(x-2\right)^2-4\right)\)

\(=4-\left(x-2\right)\ge4\)

MIN B = 4 khi \(x-2=0=>x=2\)

Ủng hộ nha tối rồi

4 tháng 5 2015

Sau khi bỏ ngoặc ta sẽ có được A(x)=xn+xn-1+xn-2+...+x

Thay x=1 vảo biểu thức A(x) bằng tổng các hệ số.

Ta có A(x)=(3-4.1+1^2)^2004.(3+4.1+1^2)^2005=0^2004.8^2005=0

28 tháng 7 2016

A=4X - 4 + 25/(X-1)-4

ÁP dụng cho 2 cái đầu tiên

28 tháng 7 2016

đây tìm GTLN  nhé bạn k dùng đc cô si

26 tháng 7 2016

A= 4x-4+25/(x-1)-4

áp dụng cho 2 cái đầu tiên kìa

27 tháng 7 2016

hình như sai rồi bạn ơi

dây tìm gtln