cho số thực:x, y, z thỏa mãn: \(y^2+yz+z^2=1-\frac{3x^2}{2}\). tìm Max và Min của biểu thức: A=x+y+z
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\left(x-y\right)^2+\left(x-z\right)^2\ge0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(x-z\right)^2+\left(x+y+z\right)^2\ge\left(x+y+z\right)^2\)
\(\Leftrightarrow x^2-2xy+y^2+x^2-2xz+z^2+x^2+y^2+z^2+2\left(xy+yz+xz\right)\ge A^2\)
\(\Leftrightarrow A^2\le2\left(y^2+yz+z^2\right)+3x^2=36\)
\(\Leftrightarrow-6\le A\le6\)
Áp dụng bất đẳng thức Cauchy-Schwarz, ta được:
\(\left(9x^3+3y^2+z\right)\left(\frac{1}{9x}+\frac{1}{3}+z\right)\ge\left(x+y+z\right)^2\)
\(\Rightarrow\frac{x}{9x^3+3y^2+z}\le\frac{x\left(\frac{1}{9x}+\frac{1}{3}+z\right)}{\left(x+y+z\right)^2}=\frac{\frac{1}{9}+\frac{x}{3}+zx}{\left(x+y+z\right)^2}\)(1)
Hoàn toàn tương tự, ta có: \(\frac{y}{9y^3+3z^2+x}\le\frac{\frac{1}{9}+\frac{y}{3}+xy}{\left(x+y+z\right)^2}\)(2); \(\frac{z}{9z^3+3x^2+y}\le\frac{\frac{1}{9}+\frac{z}{3}+yz}{\left(x+y+z\right)^2}\)(3)
Cộng theo vế của 3 bất đẳng thức (1), (2), (3), ta được:
\(\frac{x}{9x^3+3y^2+z}+\frac{y}{9y^3+3z^2+x}+\frac{z}{9z^3+3x^2+y}\)\(\le\frac{\frac{1}{9}.3+\frac{x+y+z}{3}+xy+yz+zx}{\left(x+y+z\right)^2}\)
\(\le\frac{\frac{1}{9}.3+\frac{x+y+z}{3}+\frac{\left(x+y+z\right)^2}{3}}{\left(x+y+z\right)^2}=1\)(*)
Mặt khác, có: \(2017\left(xy+yz+zx\right)\le2017.\frac{\left(x+y+z\right)^2}{3}=\frac{2017}{3}\)(**)
Từ (*) và (**) suy ra \(A=\frac{x}{9x^3+3y^2+z}+\frac{y}{9y^3+3z^2+x}+\frac{z}{9z^3+3x^2+y}+2017\left(xy+yz+zx\right)\)
\(\le1+\frac{2017}{3}=\frac{2020}{3}\)
Đẳng thức xảy ra khi \(x=y=z=\frac{1}{3}\)
Lời giải:
ĐKĐB \(\Leftrightarrow \frac{3x^2}{2}+y^2+yz+z^2=1\)
Áp dụng BĐT Am-Gm ta có \(yz\leq \left (\frac{y+z}{2}\right)^2\)
\(\Rightarrow 1=\frac{3x^2}{2}+y^2+yz+z^2=\frac{3x^2}{2}+(y+z)^2-yz\geq \frac{3x^2}{2}+\frac{3(y+z)^2}{4}\)
\(\Leftrightarrow \frac{2}{3}\geq x^2+\frac{(y+z)^2}{2}\)
Áp dụng BĐT Cauchy- Schwarz: \(3\left [x^2+\frac{(y+z)^2}{2}\right]=\left [x^2+\frac{(y+z)^2}{2}\right](1+2)\geq (x+y+z)^2\)
\(\Rightarrow 2\geq 3\left [x^2+\frac{(y+z)^2}{2}\right]\geq (x+y+z)^2\Rightarrow -\sqrt{2}\leq x+y+z\leq \sqrt{2}\)
Vậy
\(x+y+z (\max)=\sqrt{2}\Leftrightarrow (x,y,z)=\left (\frac{\sqrt{2}}{3},\frac{\sqrt{2}}{3},\frac{\sqrt{2}}{3}\right)\)
\(x+y+z(\min)=-\sqrt{2}\Leftrightarrow (x,y,z)=\left(\frac{-\sqrt{2}}{3},\frac{-\sqrt{2}}{3},\frac{-\sqrt{2}}{3}\right)\)