A=1+2+22+...+2100
B=3+32+33+...+3100
C=7 - 74+74 -...+7301
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(a,A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2009}+2^{2010}\right)\\ A=\left(1+2\right)\left(2+2^3+...+2^{2009}\right)=3\left(2+...+2^{2009}\right)⋮3\\ A=\left(2+2^2+2^3\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\\ A=\left(1+2+2^2\right)\left(2+...+2^{2008}\right)=7\left(2+...+2^{2008}\right)⋮7\)
\(b,\left(\text{sửa lại đề}\right)B=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2009}+3^{2010}\right)\\ B=\left(1+3\right)\left(3+3^3+...+3^{2009}\right)=4\left(3+3^3+...+3^{2009}\right)⋮4\\ B=\left(3+3^2+3^3\right)+...+\left(3^{2008}+3^{2009}+3^{2010}\right)\\ B=\left(1+3+3^2\right)\left(3+...+3^{2008}\right)=13\left(3+...+3^{2008}\right)⋮13\)
Bài 2:
\(a,\Rightarrow2A=2+2^2+...+2^{2012}\\ \Rightarrow2A-A=2+2^2+...+2^{2012}-1-2-2^2-...-2^{2011}\\ \Rightarrow A=2^{2012}-1>2^{2011}-1=B\\ b,A=\left(2020-1\right)\left(2020+1\right)=2020^2-2020+2020-1=2020^2-1< B\)
Giải:
a) A = 21 + 22 + 23 + 24 + .............. + 22010
Ta có :
Trong 1 tích chỉ cần có 1 số chia hết cho n thì tích đó chia hết cho n mà 21 \(⋮\)cả 3 và 7
=> A \(⋮\)cả 3 và 7
Vây A \(⋮\)cả 3 và 7
b) B = 31 + 32 + 33 + 34 + ............... + 22010
Ta có :
Trong 1 tích chỉ cần có 1 số chia hết cho n thì tích đó chia hết cho n
mà 32 \(⋮\)4
Vì dãy số trên là các số tự nhiên có khoảng cách là 1 nên 39 nằm trong dãy số đó mà 39 \(⋮\)13
=> B \(⋮\)cả 4 và 13
Vậy B \(⋮\)cả 4 và 13
c) C = 51 + 52 + 53 + 54 + ................... + 52010
Ta có :
Trong 1 tích chỉ cần có 1 số chia hết cho n thì tích đó chia hết cho n
mà 54 \(⋮\)6
Vì dãy số trên là các số tự nhiên có khoảng cách là 1 nên 62 nằm trong dãy số đó mà 62 \(⋮\)31
=> C \(⋮\)cả 6 và 31
Vậy C \(⋮\)cả 6 và 31
d) D = 71 + 72 + 73 + 74 + ...................... + 72010
Ta có :
Trong 1 tích chỉ cần có 1 số chia hết cho n thì tích đó chia hết cho n
mà 72 \(⋮\)8
Vì dãy số trên là các số tự nhiên có khoảng cách là 1 nên 114 nằm trong dãy số đó mà 114 \(⋮\)57
=> D \(⋮\)cả 8 và 57
Vậy D \(⋮\)cả 8 và 57
Học tốt!!!
a ) − 5 4 < − 1. b ) 31 8 > 2. c ) 9 14 < 17 7 . d ) 67 60 > 1 10
\(A=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{99}}\)
\(\Rightarrow\dfrac{A}{3}=\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\)
\(\Rightarrow A-\dfrac{A}{3}=\dfrac{2A}{3}=\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\right)-\left(\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\right)\)
\(\Rightarrow\dfrac{2A}{3}=\left(\dfrac{1}{3^2}-\dfrac{1}{3^2}\right)+\left(\dfrac{1}{3^3}-\dfrac{1}{3^3}\right)+...+\left(\dfrac{1}{3^{99}}-\dfrac{1}{3^{99}}\right)+\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)=\dfrac{1}{3}-\dfrac{1}{3^{100}}\)
\(\Rightarrow2A=3\cdot\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)\)
\(\Rightarrow\text{A}=\dfrac{1-\dfrac{1}{3^{99}}}{2}\)
\(\Rightarrow A=\dfrac{1}{2}-\dfrac{1}{2.3^{99}}< \dfrac{1}{2}\)
7 + − 23 < 15+ − 33 − 11 + 5 > − 8 + − 2 − 21 + − 6 > − 7 − 15 + 74 > 15 + − 74
-(-2009+97)-74.(-18)+74.(-118)-2009-3
=2009-97+74.(18+-118)-2009-3
=(2009-2009)-(97+3)+74.(-100)
=(-100)+74.(-100)
=(-100).(1+74)
=(-100).75
=(-7500)
-1+3-5+7-9.....+95-97+99
= -1+[(3+7+...+95)-(5+9+...+97)]+99
= (-1+99)+(1176-1224)
= 98+ (-48)
=50
B)(x+1).(xy-2)=11
=>x+1 và xy-2 thuộc {1,-1,11,-11}
Ta có Bảng
x+1 | 1 | 11 | -1 | -11 |
x | 0 | 10 | -2 | -12 |
xy-2 | 11 | 1 | -11 | -1 |
xy | 13 | 3 | -9 | 1 |
y | ko có y | ko có y | ko có y | ko có y |
Vậy ko có cặp (x,y) nào thỏa mãn điều kiện bài toán
C)xy-7y+y=-22
xy-(7-1).y=-22
y.(x-6)= -22
=>y và x-6 thuộc {1,-1,2-2,11,-11,22,-22}
rồi bạn làm bảng như trên nhé
k cho mình nha bạn
1,
\(64^7\div4^5\)
\(=\left(4^3\right)^7\div4^5\)
\(=4^{21}\div4^5\)
\(=4^{16}\)
2,
\(A=2+2^2+2^3+...+2^{2019}\)
\(2A=2^2+2^3+2^4+...+2^{2020}\)
\(2A-A=\left(2^2+2^3+2^4+...+2^{2020}\right)-\left(2+2^2+2^3+...+2^{2019}\right)\)
\(A=2^{2020}-2\)
3,
\(74^{30}=\left(74^2\right)^{15}=\overline{.....6}^{15}=\overline{.....6}\)
\(39^{31}=39^{30}\cdot39=\left(39^2\right)^{15}\cdot39=\overline{.....1}^{15}\cdot39=\overline{.....1}\cdot39=\overline{......9}\)
\(87^{32}=\left(87^4\right)^8=\overline{.....1}^8=\overline{.....1}\)
\(58^{33}=58^{32}\cdot58=\left(58^4\right)^8\cdot58=\overline{....6}^8\cdot58=\overline{.....6}\cdot58=\overline{....8}\)
\(23^{35}=23^{32}\cdot23^3=\left(23^4\right)^8\cdot\overline{....7}=\overline{....1}^8\cdot\overline{...7}=\overline{....1}\cdot\overline{....7}=\overline{....7}\)