(x+y)3 -(x-y)3 - 2y3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(x-y\right)\left(x^2+xy+y^2\right)+2y^3\)
\(=x^3-y^3+2y^3=x^3+y^3\)
Khi x=2/3 và y=1/3 thì \(A=\left(\dfrac{2}{3}\right)^3+\left(\dfrac{1}{3}\right)^3=\dfrac{8}{27}+\dfrac{1}{27}=\dfrac{9}{27}=\dfrac{1}{3}\)
Ta có:
\(A=\left(x-y\right)\left(x^2+xy+y^2\right)+2y^3\)
\(A=x^3-y^3+2y^3\)
\(A=x^3+y^3\)
Thay x = \(\dfrac{2}{3}\) và \(y=\dfrac{1}{3}\) vào A ta có:
\(A=\left(\dfrac{2}{3}\right)^3+\left(\dfrac{1}{3}\right)^3=\dfrac{8}{27}+\dfrac{1}{27}=\dfrac{9}{27}=\dfrac{1}{3}\)
\(x^3+y^3+y^3\ge3\sqrt[3]{x^3.y^3.y^3}=3xy^2\)
\(x^3+1+1\ge3x\)
\(2\left(y^3+1+1\right)\ge6y\)
Cộng vế:
\(2\left(x^3+2y^3\right)+6\ge3\left(x+2y+xy^2\right)=12\)
\(\Rightarrow x^3+2y^3\ge3\) (đpcm)
Dấu "=" xảy ra khi \(x=y=1\)
a) \(\left(x^5+4x^3-6x^2\right):4x^2\)
\(=\left(x^5:4x^2\right)+\left(4x^3:4x^2\right)+\left(-6x^2:4x^2\right)\)
\(=\dfrac{1}{4}x^3+x-\dfrac{3}{2}\)
b) x^3 + x^2 - 12 x-2 x^3 - 2x^2 3x^2 - 12 3x^2 - 6x 6x - 12 x^2+3x+6 6x - 12 0
Vậy \(\left(x^3+x^2-12\right):\left(x-2\right)=x^2+3x+6\)
c) (-2x5 : 2x2) + (3x2 : 2x2) + (-4x^3 : 2x^2)
= \(-x^3+\dfrac{3}{2}-2x\)
d) \(\left(x^3-64\right):\left(x^2+4x+16\right)\)
\(=\left(x-4\right)\left(x^2+4x+16\right):\left(x^2+4x+16\right)\)
\(=x-4\)
(dùng hẳng đẳng thức thứ 7)
Bài 2 :
a) 3x(x - 2) - 5x(1 - x) - 8(x2 - 3)
= 3x2 - 6x - 5x + 5x2 - 8x2 + 24
= (3x2 + 5x2 - 8x2) + (-6x - 5x) + 24
= -11x + 24
b) (x - y)(x2 + xy + y2) + 2y3
= x3 - y3 + 2y3
= x3 + y3
c) (x - y)2 + (x + y)2 - 2(x - y)(x + y)
= (x - y)2 - 2(x - y)(x + y) + (x + y)2
= [(x - y) + x + y)2 = [x - y + x + y] = (2x)2 = 4x2
Bài 1 :
a]= \(\frac{1}{4}\)x3 + x - \(\frac{3}{2}\).
b] => [x3 + x2 -12 ] = [ x2 +3 ][x-2] + [-6]
c]= -x3 -2x +\(\frac{3}{2}\).
d] = [ x3 - 64 ] = [ x2 + 4x + 16][ x- 4].
\(\left(x+y\right)^2+xy^2+2y^3=9y^2+8x\)
\(\Leftrightarrow x^2+y^2+2xy+xy^2+2y^3=9y^2+8x\)
\(\Leftrightarrow xy^2+x^2-8y^2-8x+2xy+2y^3=0\)
\(\Leftrightarrow x\left(y^2+x\right)-8\left(y^2+x\right)+2y\left(y^2+x\right)=0\)
\(\Leftrightarrow\left(y^2+x\right)\left(x-8+2y\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y^2+x=0\\x+2y=8\end{matrix}\right.\)
TH1: \(y^2+x=0\Leftrightarrow x=y=0\), thỏa mãn.
TH2: \(x+2y=8\Rightarrow\left(x;y\right)\in\left\{\left(0;4\right);\left(2;3\right);\left(4;2\right);\left(6;1\right);\left(8;0\right)\right\}\)
Vậy pt đã cho có các cặp nghiệm tự nhiên (x; y) là:
\(\left(x;y\right)\in\left\{\left(0;0\right);\left(0;4\right);\left(2;3\right);\left(4;2\right);\left(6;1\right);\left(8;0\right)\right\}\)
Thay x=1 và y=2 vào biểu thức x-3xy+2y\(^3\)
Ta được 1-3.1.2+2.2\(^3\)=11
Vậy giá trị biểu thức x-3xy+2y\(^3\) tại x=1 và y=2 là 11