Bài 7:
b)B= [-4(a+b)3-(2a+2b)5]:(-3a-3b)2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
a. -3a - 1 + 1 > -3b - 1 + 1 (cộng cả 2 vế cho 1)
-3a . \(\left(\dfrac{-1}{3}\right)\) < -3b . \(\left(\dfrac{-1}{3}\right)\) (nhân cả vế cho \(\dfrac{-1}{3}\) )
a < b
b. 4a + 3 + (- 3) < 4b + 3 +(- 3) (cộng cả 2 vế cho -3)
4a . \(\dfrac{1}{4}\) < 4b . \(\dfrac{1}{4}\) (nhân cả 2 vế cho \(\dfrac{1}{4}\) )
a < b
2.
a. Ta có: a < b
3a < 3b ( nhân cả 2 vế cho 3)
3a - 7 < 3b - 7 (cộng cả 2 vế cho - 7 )
b. Ta có: a < b
-2a > -2b (nhân cả 2 vế cho -2)
5 - 2a > 5 - 2b ( cộng cẩ 2 vế cho 5)
c. Ta có: a < b
2a < 2b (nhân cả vế cho 2)
2a + 3 < 2b + 3 (cộng cả 2 vế cho 3)
d. Ta có: a < b
3a < 3b (nhân cả 2 vế cho 3)
3a - 4 < 3b - 4 (cộng cả 2 vế cho -4)
Ta có: 3 < 4
đến đây ko bắt cầu qua đc chắc đề bài sai
1.a + b - c = 18
a + 10 - (-9)=18
a = 18 - 19
a = -1
2.2a - 3.-2 + 4=0
2a - -6 +4=0
2a - (-6) = 0 - 4
2a - (-6) = -4
2a = -4 + -6
2a = -10
a = -10 : 2
a = -5
3.3a - 6 - 2.-1=2
= 2 : -1
= -2 + 2
= 0+6
=6:3
a = 2
4.12 - a + -7 +5.5=-1
12 - a + -7 + 25 = -1
= -1 - 25
= -26
=-26-(-7)
= -19
= 12 - 19
a =31
5.1-2.-3+-7-3a=-9
0 - 3a =9
3a = 0 - (-9)
3a =9
a = 9:3
a = 3
1) Thay b= 10; c = -9 vào biểu thức, ta có:
\(a+10-\left(-9\right)=18\)
\(a=18-10-9\)
\(a=-1\)
2) Thay b = -2; c= 4 vào biểu thức ta có:
\(2a-3.\left(-2\right)+4=0\)
\(2a+10=0\)
\(2a=-10\)
\(a=-5\)
3) Thay b = 6; c= -1 vào biểu thức ta có:
\(3a-6-2.\left(-1\right)=2\)
\(3a-4=2\)
\(3a=6\)
\(a=2\)
b) Thay b = -7; c= 5 vào biểu thức ta có:
\(12-a+\left(-7\right)+5.5=-1\)
\(12-a+18=-1\)
\(12-a=-19\)
\(a=-7\)
5) Thay b = -3; c= -7 vào biểu thức ta có:
\(1-2.\left(-3\right)+\left(-7\right)-3a=-9\)
\(-3a=-9\)
\(a=3\)
hok tốt!!
\(\dfrac{4}{a+b}-\dfrac{2a^2+3b^2}{2a^3+3b^3}-\dfrac{2b^2+3a^2}{2b^3+3a^3}=\dfrac{\left(a-b\right)^2.\left(12b^4+12ab^3-a^2b^2+12a^3b+12a^4\right)}{\left(a+b\right)\left(2a^3+3b^3\right)\left(2b^3+3a^3\right)}\ge0\)
PS: Còn cách dùng holder nữa mà lười quá
holder Câu hỏi của Lê Minh Đức - Toán lớp 9 - Học toán với OnlineMath
Ta có: \(\frac{2a^2+3b^2}{2a^3+3b^3}\left(a+b\right)=1+ab\frac{2a+3b}{2a^3+3b^3}\)
Áp dụng BĐT Holder ta có:
\(\left(2a^3+3b^3\right)\left(2+3\right)^2\ge\left(2a+3b\right)^3\)
Vậy ta có thể viết lại BĐT cần chứng minh như sau;
\(VT\left(a+b\right)\le2+25ab\left(\frac{1}{\left(2a+3b\right)^2}+\frac{1}{\left(2b+3a\right)^2}\right)\)
Nó đủ để ta có thể thấy rằng
\(25ab\left[\left(2b+3a\right)^2+\left(2a+3b\right)^2\right]\le2\left(2a+3b\right)^2\left(2b+3a\right)^2\)
\(\Leftrightarrow59\left(a^2-b^2\right)^2+13\left(a^4+b^4-a^3b-ab^3\right)\ge0\)
BĐT cuối cùng đúng nên ta có ĐPCM
3. Câu hỏi của Hoàng Đức Thịnh - Toán lớp 8 - Học toán với OnlineMath
\(B=[-4\left(a+b\right)^3-\left(2a+2b\right)^5]:\left(-3a-3b\right)^2\)
\(=-4\left(a+b\right)^3:[-3\left(a+b\right)]^2-\left(2a+2b\right)^5:[-3\left(a+b\right)]^2\)
\(=-4\left(a+b\right)^3:9\left(a+b\right)^2-32\left(a+b\right)^5:9\left(a+b\right)^2\)
\(=\frac{-4}{9}\left(a+b\right)-\frac{32}{9}\left(a+b\right)^3\)