K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: ha=9; hb=12; hc=16

=>hc*9=ha*16=hb*12

=>hc/16=ha/9=hb/12

=>Haitam giác này đồng dạng 

b: ha=4; hb=5; hc=6

=>ha*6=24; hb*5=25; ha*4=24

=>Hai tam giác này ko đồng dạng

19 tháng 8 2016

C A B H 2 8

Áp dụng hệ thức liên quan tới đường cao ta có :

  \(AH^2=BH.CH=2.8=16\)

\(\Rightarrow AH=4cm\)

19 tháng 8 2016

Áp dụng công thức \(AH^2=BH.CH\) (hệ thức về cạnh trong tam giác vuông)

Được : \(AH^2=8.2=16\Rightarrow AH=4\) (cm)

Câu 1: Tam giác ABC vuông tại A có AM là đường trung tuyến ứng với cạnh huyền BC

 => AM=\(\frac{1}{2}\)BC mà AM=6 cm=> BC=12cm.

Tam giác ANB vuông tại A có AN2+AB2=BN2 (Theo Pytago)   mà BN=9cm (gt)

=>AN2+AB2=81        Lại có AN=\(\frac{1}{2}\)AC =>\(\frac{1}{2}\)AC2+AB2=81     (1)

Tam giác ABC vuông tại A có: AC2+AB2=BC=> BC2 - AB= AC2   (2)

Từ (1) và (2) suy ra \(\frac{1}{4}\)* (BC- AB2)+AB2=81       mà BC=12(cmt)

=> 36 - \(\frac{1}{4}\)AB2+AB2=81

=> 36+\(\frac{3}{4}\)AB2=81

=> AB2=60=>AB=\(\sqrt{60}\)

C2

Cho hình thang cân ABCD có đáy lớn CD = 1

C4

Câu hỏi của Thiên An - Toán lớp 9 - Học toán với OnlineMath

28 tháng 2 2022

Trường hợp 1 nếu góc B < 90o => BC > AC (khác đề)

Trường hợp 2 nếu góc B = 90 độ (khác đề)

Trường hợp 3 nếu góc B > 90o => AC > BC ( đúng) 

Nên ta sẽ đi xét trường hợp 3 : B > 90o ( bạn phải vẽ B > 90o nhé) HB = MH - BM

=> HB = a - (x+1)/2

=> HB^2 = (a - (x+1)/2)^2 HC = HB + BC

=> HC = a - x/2 + x

=> HC^2 = (a + (x+1)/2)^2 

Ta có AH^2 = AC^2 - HC^2 AH^2 = AB^2 - HB^2

 => AC^2 - HC^2 = AB^2 - HB^2 

<=> (x + 2)^2 - (a+ (x+1)/2)^2 = x^2 - (a - (x+1)/2)^2 

<=> x^2 - 4x - 4 - a^2 - ax - a - (x^2+2x+1)/4 = x^2 - a^2 + ax + a - (x^2+2x+1)/4 

<=> 2ax + 2a - 4x - 4 = 0 

<=> 2a(x+1) - 4(x+1) = 0 

<=> (x + 1).2(a - 2) = 0 

<=> x = -1 hoặc a = 2 hay AB = -1 hoặc HM = 2 

28 tháng 2 2022

Tham khảo

​Đặt AB = x , BC = x + 1 , AC = x + 2 , MH = a Xét 3 trường hợp 

Trường hợp 1 nếu góc B < 90o => BC > AC (khác đề)

Trường hợp 2 nếu góc B = 90 độ (khác đề)

Trường hợp 3 nếu góc B > 90o => AC > BC ( đúng) 

Nên ta sẽ đi xét trường hợp 3 : B > 90o ( bạn phải vẽ B > 90o nhé) HB = MH - BM

=> HB = a - (x+1)/2

=> HB^2 = (a - (x+1)/2)^2 HC = HB + BC

=> HC = a - x/2 + x

=> HC^2 = (a + (x+1)/2)^2 

Ta có AH^2 = AC^2 - HC^2 AH^2 = AB^2 - HB^2

 => AC^2 - HC^2 = AB^2 - HB^2 

<=> (x + 2)^2 - (a+ (x+1)/2)^2 = x^2 - (a - (x+1)/2)^2 

<=> x^2 - 4x - 4 - a^2 - ax - a - (x^2+2x+1)/4 = x^2 - a^2 + ax + a - (x^2+2x+1)/4 

<=> 2ax + 2a - 4x - 4 = 0 

<=> 2a(x+1) - 4(x+1) = 0 

<=> (x + 1).2(a - 2) = 0 

<=> x = -1 hoặc a = 2 hay AB = -1 hoặc HM = 2 

15 tháng 1 2022

​Đặt AB = x , BC = x + 1 , AC = x + 2 , MH = a Xét 3 trường hợp 

Trường hợp 1 nếu góc B < 90o => BC > AC (khác đề)

Trường hợp 2 nếu góc B = 90 độ (khác đề)

Trường hợp 3 nếu góc B > 90o => AC > BC ( đúng) 

Nên ta sẽ đi xét trường hợp 3 : B > 90o ( bạn phải vẽ B > 90o nhé) HB = MH - BM

=> HB = a - (x+1)/2

=> HB^2 = (a - (x+1)/2)^2 HC = HB + BC

=> HC = a - x/2 + x

=> HC^2 = (a + (x+1)/2)^2 

Ta có AH^2 = AC^2 - HC^2 AH^2 = AB^2 - HB^2

 => AC^2 - HC^2 = AB^2 - HB^2 

<=> (x + 2)^2 - (a+ (x+1)/2)^2 = x^2 - (a - (x+1)/2)^2 

<=> x^2 - 4x - 4 - a^2 - ax - a - (x^2+2x+1)/4 = x^2 - a^2 + ax + a - (x^2+2x+1)/4 

<=> 2ax + 2a - 4x - 4 = 0 

<=> 2a(x+1) - 4(x+1) = 0 

<=> (x + 1).2(a - 2) = 0 

<=> x = -1 hoặc a = 2 hay AB = -1 hoặc HM = 2 

13 tháng 9 2021

1.

\(BC=\sqrt{AB^2+AC^2}=5\left(cm\right)\left(pytago\right)\)

Áp dụng HTL tam giác 

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\\AH^2=BH\cdot HC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=1,8\left(cm\right)\\CH=\dfrac{AC^2}{BC}=3,2\left(cm\right)\\AH=\sqrt{3,2\cdot1,8}=5,76\left(cm\right)\end{matrix}\right.\)

13 tháng 9 2021

2.

Áp dụng HTL tam giác

\(\left\{{}\begin{matrix}AH^2=BH\cdot HC=HC\\AB^2=BH\cdot BC=BC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}HC=4\left(cm\right)\\AB=\sqrt{HC+HB}=\sqrt{4+1}=\sqrt{5}\left(cm\right)\end{matrix}\right.\)

\(AC=\sqrt{BC^2-AB^2}=\sqrt{5^2-5}=2\sqrt{5}\left(cm\right)\)

Vậy \(AB=\sqrt{5}\left(cm\right);BC=5\left(cm\right);AC=2\sqrt{5}\left(cm\right)\)

a: Xét ΔAHB vuông tại H có HM là đường cao ứng với cạnh huyền AB

nên \(AM\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HN là đường cao ứng với cạnh huyền AC

nên \(AN\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)

b: Xét tứ giác AMHN có 

\(\widehat{NAM}=\widehat{ANH}=\widehat{AMH}=90^0\)

Do đó: AMHN là hình chữ nhật

Suy ra: AH=NM

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(AH^2=HB\cdot HC\)

hay AH=6(cm)

mà AH=NM

nên MN=6cm

( 12 + 4 ) : 2 = 8 cm 

Đúng 100% tớ làm rồi , tích tớ nhé Nguyễn Văn Duy

3 tháng 4 2016

gọi a,b,c là độ dại 3 cạnh,ha,hb,hc là 3 đường cao tương ứng

ha = 4 và hb = 12,ta tìm hc

+ ta có

S = 1/2*a.ha

=>a = 2

S/ha tương tự

b = 2S/hb và c=2S/hc + do ABC la 1 tam giác nên *

a + b > c

=> 2S/ha + 2S/hb > 2S/hc <> 1/hc < 1/4 + 1/12 = 1/3

=> hc > 3 * b + c > a

=> 1/12 + 1/hc > 1/4 <>1/hc > 1/6

=> hc < 6  

do hc nguyên nên hc = 4 hoạc hc = 5 

18 tháng 5 2019

Gọi a là độ dài cạnh của tam giác ABC

+ Ta có : \(S_{AMB}+S_{BMC}+S_{AMC}=S_{ABC}\)

\(\Rightarrow\frac{1}{2}\cdot x\cdot a+\frac{1}{2}\cdot y\cdot a+\frac{1}{2}\cdot z\cdot a=\frac{1}{2}\cdot a\cdot h\)

\(\Rightarrow\frac{1}{2}a\left(x+y+z\right)=\frac{1}{2}a\cdot h\)

\(\Rightarrow x+y+z=h\)             ( do \(\frac{1}{2}a\ne0\) )

\(x^2+y^2+z^2\ge\frac{1}{3}\left(x+y+z\right)^2\)

\(\Rightarrow x^2+y^2+z^2\ge\frac{1}{3}h^2\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z\)

<=> M là giao điểm 3 đg phân giác của tam giác ABC