K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2016

C A B H 2 8

Áp dụng hệ thức liên quan tới đường cao ta có :

  \(AH^2=BH.CH=2.8=16\)

\(\Rightarrow AH=4cm\)

19 tháng 8 2016

Áp dụng công thức \(AH^2=BH.CH\) (hệ thức về cạnh trong tam giác vuông)

Được : \(AH^2=8.2=16\Rightarrow AH=4\) (cm)

7 tháng 11 2018

Đề kiểm tra Toán 9 | Đề thi Toán 9

a) Xét tam giác ABC vuông tại A có:

A B 2 + A C 2 = B C 2

Đề kiểm tra Toán 9 | Đề thi Toán 9

Tam giác ABC vuông tại A có AH là đường cao nên ta có:

Đề kiểm tra Toán 9 | Đề thi Toán 9

Ta có:

BH + CH = BC ⇒ CH = BC - BH = 5 - 9/5 = 16/5 (cm)

16 tháng 9 2019

Tứ giác ADHE có 3 góc vuông nên nó là hình chữ nhật

Suy ra: AH = DE (tính chất hình chữ nhật)

Tam giác ABC vuông tại A và có AH là đường cao

Theo hệ thức giữa đường cao và hình chiếu ta có:

A H 2  = HB.HC = 4.9 = 36 ⇒ AH = 6 (cm)

Vậy DE = 6 (cm)

22 tháng 8 2023

Bạn tự vẽ hình.

(a) \(BC^2=AB^2+AC^2\left(Pythagoras\right)\)

\(\Rightarrow AC=\sqrt{BC^2-AB^2}=\sqrt{5^2-3^2}=4\left(cm\right)\)

+) \(sinB=\dfrac{AC}{BC}=\dfrac{4}{5}\Rightarrow\hat{B}\approx53^o\)

+) \(\hat{C}=90^o-\hat{B}\approx90^o-53^o=37^o\)

(b) +) \(AB.AC=BC.AH\Leftrightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{3\cdot4}{5}=2,4\left(cm\right)\)

\(\hat{A}=\hat{E}=\hat{F}=90^o\left(gt\right)\Rightarrow AEHF\) là hình chữ nhật.

Do đó, \(EF=AH\left(đpcm\right)\)

22 tháng 8 2023

ok bn

 

16 tháng 10 2023

a: ΔABC vuông tại A

=>\(BC^2=AB^2+AC^2\)

=>\(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

=>\(AH\cdot10=6\cdot8=48\)

=>AH=4,8cm

Xét ΔABC vuông tại A có \(sinACB=\dfrac{AB}{BC}=\dfrac{3}{5}\)

=>\(\widehat{ACB}\simeq36^052'\)

b: ΔHAB vuông tại H có HE là đường cao

nên \(AE\cdot AB=AH^2\left(1\right)\)

ΔHAC vuông tại H có HF là đường cao

nên \(AF\cdot AC=AH^2\left(2\right)\)

Từ (1),(2) suy ra \(AE\cdot AB=AF\cdot AC\)

=>\(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)

Xét ΔAEF vuông tại A và ΔACB vuông tại A có

\(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)

Do đó: ΔAEF đồng dạng với ΔACB

=>\(\widehat{AFE}=\widehat{ABC}\)

a: AB/AC=2/3

=>HB/HC=4/9

=>HB/4=HC/9=(HB+HC)/(4+9)=2*căn 13/13

=>HB=8/13*căn 13; HC=18/13*căn 13(cm)

\(AH=\sqrt{HB\cdot HC}=\dfrac{12\sqrt{13}}{13}\left(cm\right)\)