Given that 5x=2y, 2x=3z and xy=90, where x,y,z are positive. Calculate: x+y+z=....
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
\(5x=2y\Rightarrow\frac{x}{2}=\frac{y}{5}\Rightarrow\frac{x}{6}=\frac{y}{15}\)
\(2x=3z\Rightarrow\frac{x}{3}=\frac{z}{2}\Rightarrow\frac{x}{6}=\frac{z}{4}\)
\(\Rightarrow\frac{y}{15}=\frac{x}{6}=\frac{z}{4}=k\)
\(\Rightarrow\left\{\begin{matrix}y=15k\\x=6k\end{matrix}\right.\Rightarrow xy=15k\cdot6k\Rightarrow90k^2=90\Rightarrow k^2=1\)
Because x,y,z are positive
\(\Rightarrow k=\sqrt{1}=1\)
\(\Rightarrow\left\{\begin{matrix}\frac{x}{6}=1\rightarrow x=6\\\frac{y}{15}=1\rightarrow y=15\\\frac{z}{4}=1\rightarrow z=4\end{matrix}\right.\)
\(\Rightarrow x+y+z=6+15+4=25\)