K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 11 2018

a) Có: \(\hept{\begin{cases}\left(2x-1\right)^{2014}\ge0\forall x\\\left|2x-y+4\right|\ge0\forall x;y\end{cases}}\)

\(\Rightarrow\left(2x-1\right)^{2014}+\left|2x-y+4\right|\ge0\forall x;y\)

\(\Rightarrow P\ge-2016\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(2x-1\right)^{2014}=0\\\left|2x-y+4\right|=0\end{cases}\Rightarrow\hept{\begin{cases}2x-1=0\\2x-y+4=0\end{cases}\Rightarrow}\hept{\begin{cases}x=\frac{1}{2}\\2x-y=-4\end{cases}\Rightarrow}y=5}\)
vậy minP=-2016 khi x=1/2; y=5
 

b) có:\(\left|x-8\right|+\left|x+3\right|=\left|8-x\right|+\left|x+3\right|\ge\left|8-x+x+3\right|=\left|11\right|=11\)

\(\Rightarrow Q\ge11-15=-4\)

dấu "=" xảy ra khi: (x-8)(x+3)>=0
Suy ra: 8 >= x >= -3

vậy minQ=-4 khi 8 >= x >= -3 

20 tháng 12 2016

Bài 1: Tìm x,y biết (x+1)2+(y-1)2=0

vì \(\hept{\begin{cases}\left(x+1\right)^2\ge0\\\left(y-1\right)^2\ge0\end{cases}}\Rightarrow\left(x+1\right)^2+\left(y-1\right)^2\ge0\) để có dấu"=" chỉ khi cả hai số hạng cùng=0 \(\hept{\begin{cases}\left(x+1\right)^2=0\\\left(y-1\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x+1=0\\y-1=0\end{cases}}}\Rightarrow\hept{\begin{cases}x=-1\\y=1\end{cases}}\)

Bài 2: Tìm giá trị nhỏ nhất của biểu thức

         A=(n-1)2+2016

\(\left(n-1\right)^2\ge0\Rightarrow\left(n-1\right)^2+2016\ge2016\Rightarrow GTNN.A=2016\)

Bài 3: Tìm giá trị lớn nhất của biểu thức:

         B=2016-(n-1).2 ; \(B=2016-\left(n-1\right).2\) Không có Gia trị Lớn nhất Vì khi n càng nhỏ hơn so với 1 B càng lớn

\(B=2016-\left(n-1\right)^2\) lập luân tương tự bài 2 GTLN B=2016

Bài 4: Chứng minh:

a, (2n+2+4n+2+2016) chia hết cho 4

\(a=2^{n+2}+4^{^{n+2}}+2016=2^2.2^n+4.4^{n+1}+4.504=4.\left(2^n+4^{n+1}+504\right)\)=> a chia hết cho 4

b, (3n+3n+1+3n+2) chia hết cho 13

\(b=3^n\left(1+3^1+3^2\right)=3^n.13=13.3^n\)=> b chia hết cho13

28 tháng 8 2015

tự biên tự diễn thôi:

a/  gọi 2 số phải tìm là a và b, ta có a+b chia hết cho 3

ta có a^3+b^3=(a+b)(a^2-ab+b^2)=(a+b)[(a^2+2ab+b^2)-3ab]= (a+b)[(a+b)^2-3ab]0,5

vì a+b chia hết cho 3 nên (a+b)^2-3ab chia hết cho 3

do vậy (a+b)[(a+b)^2-3ab] chia hết cho 3

ai làm câu b

Bài 4: Tam giác ABC vuông tại A, đường cao AH. I, K lần lượt là hình chiếu của H trên AB, AC. M là trung điểm của BC. Chứng minh rằng: AM vuông góc với IKBài 5: Hình thang vuông ABCD, góc A= góc B= 90 độ, AB= AD= CD/2. E thuộc AB; EF vuông góc với DE ( F thuộc DC ). Chứng minh rằng: ED= EFBài 1:1) Tính nhanh:d) D= 100^2+ 103^2+ 105^2+ 94^2- ( 101^2+ 98^2+ 96^2+ 107^2 )2)Rút gọn và tính giá trị của biểu thức:b)...
Đọc tiếp

Bài 4: Tam giác ABC vuông tại A, đường cao AH. I, K lần lượt là hình chiếu của H trên AB, AC. M là trung điểm của BC. Chứng minh rằng: AM vuông góc với IK
Bài 5: Hình thang vuông ABCD, góc A= góc B= 90 độ, AB= AD= CD/2. E thuộc AB; EF vuông góc với DE ( F thuộc DC ). Chứng minh rằng: ED= EF

Bài 1:
1) Tính nhanh:
d) D= 100^2+ 103^2+ 105^2+ 94^2- ( 101^2+ 98^2+ 96^2+ 107^2 )
2)Rút gọn và tính giá trị của biểu thức:
b) (x-2)^3-(x-2)(x^2+2x+4)+6(x-2)(x+2)-x(x-1) tại x= 101
c) (x+1)^3-(x+3)(x^2-3x+9)+3(2x-1)^2 tại x= -2
Bài 11: Xác định đa thức f(x) biết f(x) chia hết cho (x-2) dư 5, f(x) chia cho (x-3) dư 7, f(x) chia cho (x-3)(x-2) được thương x^2-1 và có dư
Bài 12: Tìm x tự nhiên sao cho:
a) Giá trị biểu thức x^3+2x-x^2+7 chia hết cho giá trị biểu thức (x^2+1)
b) Giá trị đa thức ( 2x^4-3x^3-x^2+5x-4) chia hết cho giá trị đa thức (x-3)
Bài 13: Tìm x thuộc Z để giá trị biểu thức 8x^2-4x+1 chia hết cho giá trị biểu thức 2x+1
Bài 14: Chứng minh rằng:
a) a^3-a chia hết cho 24a với a là số nguyên tố lớn hơn 3
b) n(2n+1)(7n+1) chia hết cho 6 với mọi n thuộc Z
c) n^3-13n chia hết cho 6 với mọi n thuộc Z
d) a^5-a chia hết cho 30 với mọi a thuộc Z

0
5 tháng 2 2020

Bài 1 : 

Đề câu a) có thêm \(n\inℤ\)

a) \(A=n^2+n+3=n\left(n+1\right)+2+1\)

Ta thấy : \(n\left(n+1\right)⋮2,2⋮2\)

\(\Rightarrow n\left(n+1\right)+2⋮2\)

\(\Rightarrow n\left(n+1\right)+2+1⋮̸2\)

hay \(A⋮̸2\) ( đpcm )

b) Ta có : \(\left|2x-4\right|\ge0\forall x\)

\(\Rightarrow-\left|2x-4\right|\le0\forall x\)

\(\Rightarrow18-\left|2x-4\right|\le18\forall x\)

hay \(A\le18\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\left|2x-4\right|=0\Leftrightarrow x=2\)

Vậy max \(A=18\) khi \(x=2\)

5 tháng 2 2020

b1 : 

a,n^2 + n + 3

= n(n + 1) + 3

n(n+1) là tích của 2 stn liên tiếp => n(n+1) chia hết cho 2

=> n(n+1) + 3 không chia hết cho 2

b, A = 18 - |2x - 4| 

|2x - 4| > 0 => - |2x - 4| < 0

=> 18 - |2x - 4| < 18 

=> A < 18

xét A = 18 khi |2x - 4| = 0

=> 2x - 4 = 0

=> x = 2

c, A = |5 - x| + 2015

|5 - x| > 0

=> |5 - x| + 2015 > 2015

=> A  > 2015

xét A = 2015 khi |5 - x| = 0

=> 5 - x = 0 => x = 5

15 tháng 11 2017

3x+7=28

3x    =28-7

3x     =21

  x    =21:3

 x      =7

3 tháng 3 2018

a) Ta có: \(\text{|}5x-2\text{|}\ge0\)

=> \(2\text{|}5x-2\text{|}\ge2.0=0\)

=> \(2\text{|}5x-2\text{|}+4\ge0+4=4\)

Vậy Min(2|5x-2|+4)=4 khi x=\(\frac{2}{5}\)

b) Ta có: \(x^2\ge0\) và \(|y-3|\ge0\)=> \(3|y-3|+5\ge3.0+5=5\)

=> \(x^2+3|y-3|+5\ge0+5=5\)

Vậy Min(x2+3|y-3|+5)=5 khi x =0 và y=3

c) Ta có: |x-1|=|1-x| (Vì hai số x-1 và 1-x là hai số đối nhau, mà giá trị tuyệt đối của hai số đối nhau luôn bằng nhau)

=> |x-1|+|x-2016|=|1-x|+|x-2016|

Ta có: \(\text{|}1-x\text{|}+\text{|}x-2016\text{|}\ge\text{|}1-x+x-2016\text{|}=\text{|}-2015\text{|}=2015\)

Vậy Min(|x-1|+|x-2016|)=2015

Mấy cái này không tìm được giá trị lớn nhất nha bạn

3 tháng 3 2018

Nó thu gon mất cái đề nên mình không thấy được mấy cái đề sau. 3 câu d, e, f bạn lập bản biến thiên ra mà làm

\(2016+\left|3-x\right|\ge2016\)

\(MinA=2016\Leftrightarrow3-x=0\Rightarrow x=3\)

\(B=-5+\left|2x+1\right|\ge-5\)

\(MinB=-5\Leftrightarrow2x+1=0\Rightarrow x=\frac{-1}{2}\)

5 tháng 11 2018

a, 2016

b,-5