K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 1 2017

Đặt \(\frac{a}{2003}\) = \(\frac{b}{2004}\) = \(\frac{c}{2005}\) = k

=> a = 2003k; b = 2004k và c = 2005k

Xét hiệu:

4(a - b)(b - c) - (c - a)2

= 4(2003k - 2004k)(2004k - 2005k) - (2005k - 2003k)2

= 4(-k)(-k) - (2k)2

= 4k2 - 22.k2

= 4k2 - 4k2 = 0

Do đó 4(a - b)(b - c) = (c - a)2.

2 tháng 1 2017

Bạn học trường nào vậy Mk thay cai bài này la cua huyện mk nên hỏi vây thôi

23 tháng 10 2016

Áp dụng tính chất của dãy tỉ số bằng nhau :

\(\frac{a}{2003}=\frac{b}{2004}=\frac{c}{2005}=\frac{a-b}{2003-2004}=\frac{b-c}{2004-2005}=\frac{c-a}{2005-2003}\)

\(\Leftrightarrow\frac{a-b}{-1}=\frac{b-c}{-1}=\frac{c-a}{2}\)

\(\Rightarrow\left(\frac{a-b}{-1}\right)\left(\frac{b-c}{-1}\right)=\left(\frac{c-a}{2}\right)^2\)

\(\Rightarrow\left(a-b\right)\left(b-c\right)=\frac{\left(c-a\right)^2}{4}\)

\(\Rightarrow4\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2\)

Vậy ...

3 tháng 3 2018

Đặt: \(\frac{a}{2003}=\frac{b}{2004}=\frac{c}{2005}=b\Rightarrow\hept{\begin{cases}a=2003b\\b=2004b\\c=2005b\end{cases}}\)

\(\Rightarrow4\left(a-b\right)\left(b-c\right)=4\left(2003b-2004b\right)\left(2004b-2005b\right)=4.-b.-b=4b^2\)

\(\Rightarrow\left(c-a\right)^2=\left(2005b-2003b\right)^2=2k^2=4k^2\)

\(\Rightarrow4\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2\left(đpcm\right)\)

3 tháng 3 2018

Đặt a/2003=b/2004=c/2005=k

Suy ra a=2003k, b=2004k, c=2005k            (*)

Thay (*) vào 4(a-b)(b-c) ta được:

4(a-b)(b-c)=4(2003k-2004k) (2004k-2005k)

              =4k(2003-2004).k(2004-2005)=4k2 .-1.-1

              =4.k2                                                           (1)

Thay (*) vào (c-a)2 ta được:

(c-a)2 =(2005k-2003k)2

= k2 (2005-2003)2

=k2 .4                                                              (2)

Từ (1) và (2)

Suy ra ĐPCM

nha

26 tháng 11 2015

Mình cũng học lớp 7 nhưng lần đầu mình thấy những loại toán này

26 tháng 11 2015

coi \(\frac{a}{2003}=\frac{b}{2004}=\frac{c}{2005}=k\Rightarrow a=2003k;b=2004k;c=2005k\)

thay mấy cái trên vào 4(a-b)(b-c)và (c-a)2

11 tháng 8 2018

Đặt \(\frac{a}{2003}=\frac{b}{2004}=\frac{c}{2005}=k\)

\(\Rightarrow a=2003k;b=2004k;c=2005k\)

\(\Rightarrow4\left(a-b\right)\left(b-c\right)=4\left(2003k-2004k\right).\left(2004k-2005k\right)=4.\left(-k\right).\left(-k\right)=4k^2\)(1)

     \(\left(c-a\right)^2=\left(2006k-2004k\right)^2=\left(2k\right)^2=4k^2\)(2)

Từ (1) và (2) 

\(\Rightarrow4.\left(a-b\right).\left(b-c\right)=\left(c-a\right)^2\)

                                      đpcm

Tham khảo nhé~  

19 tháng 10 2016

\(\frac{a}{2003}=\frac{b}{2004}=\frac{a-b}{2003-2004}=-\left(a-b\right)\) = -(b-c)=\(\frac{c-a}{2}\)

=> -(a-b).(-(b-c)=\(\frac{c-a}{2}.\frac{c-a}{2}=\frac{\left(c-a\right)^2}{4}\)

<=> 4.(a-b).(b-c)=(c-a)2

26 tháng 10 2020

Đặt \(\frac{a}{2003}=\frac{b}{2004}=\frac{c}{2005}=k\left(k\ne0\right)\)

\(\Rightarrow a=2003k\)\(b=2004k\)\(c=2005k\)

Ta có: \(4\left(a-b\right)\left(b-c\right)=4\left(2003k-2004k\right)\left(2004k-2005k\right)\)

\(=4.\left(-k\right).\left(-k\right)=4k^2\)(1)

Mặt khác ta có: \(\left(c-a\right)^2=\left(2005k-2003k\right)^2=\left(2k\right)^2=4k^2\)(2)

Từ (1) và (2) \(\Rightarrow4\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2\)( đpcm )