Bên trong hình vuông có cạnh 5cm cho 51 điểm, trong đó không có 3 diểm nào thẳng hàng. Chứng minh rằng luôn tồn tại một tam giác có 3 đỉnh là 3 điểm đã cho mà có diện tích không lớn hơn 0.5cm2.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi d là khoảng cách Ai AJ là 2 điểm xa nhau nhất trong các điểm thuộc tập S
Giả sử Ak là điểm xa đường Ai AJ nhất. Ta có tam giác Ai AJAk có diện tích không lớn hơn 1(theo giả thiết). và là tam giác có Smax
Từ các đỉnh Ai, AJ,Ak ta kẻ các đường thẳng song song với các cạnh của tam giác.
Ta sẽ thu được 4 tam giác con bằng nhau và tam giac lớn nhất
Diện tích tam giác lớn nhất này không quá 4 đơn vị
Tam giác lớn nhất này chứa cả 8065 điểm đã cho
(dễ chứng minh bằng phản chứng vì S của tam giác Ai AJAmax)
Vì
8065:4=2016 dư 1
Suy ra tồn tại 1 trong 4 tam giác con chứa không dưới 2017 điểm thuộc tập S thỏa mãn đề bài.
Gọi M,N,P lần lượt là trung điểm các cạnh AB,AC,BC
Do đó diện tích AMN = diện tích BMP = diện tích ANP = \(\frac{1}{4}\) diện tích ABC
Theo nguyên lý di - rich - le thì trong 9 điểm đề bài cho,ít nhất có 3 điểm nằm trong tam giác AMN,BMP hoặc tam giác ANP
Gọi 3 điểm đó là H,I,K
Chẳng hạn 3 điểm H,I,K nằm trong tam giác ANP
= > diện tích HIK < diện tích ANP = \(\frac{1}{4}\) diện tích tam giác ABC
Vậy sẽ có một tam giác nhỏ hơn \(\frac{1}{4}\) diện tích tam giác ABC
Đáp số : Sẽ có một tam giác nhỏ hơn \(\frac{1}{4}\) diện tích tam giác ABC
chia hình vuông thành 25 hình vuông nhỏ có cạnh bằng 1cm ( nghĩa là diện tích bằng 1cm^2)
Theo nguyên lí dirichlet do có 51 điểm và 25 hình vuông
nên tồn tại một hình vuông con chứa ít nhất 3 điểm
Nên 3 điểm đỏ taoh thành 1 tma giác có diện tích nhỏ hơn 1/2 diện tích hình vuông nhỏ là 0,5 cm^2
Vậy ta có điều phải chứng minh