làm giúp mik cái sáng mai nộp rui !!!,<3<3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Everyone has a person to love. And so do I. To me, that person is my mother. This year, she is nearly 40 years old. My mom is very tall. She has a round face, brown eyes and short hair. To my ways of thinking, she is the most beautiful woman in the world. My mom cooks very well and very hard-working. She plays badminton well, too. In her free time, she often teaches me maths or surfing the Internet. My mom loves me very much. She can sacrifice everything for me. When I have problems, I always confide to my mom. She encourages and consoles me when I sad or when I got bad marks.. She gives me a present and very happy when I do good work. There is an unforgetable memory that makes me love my mom much more. That night, I had an illness and I felt so sick that I counldn't even stand. My mom spent a sleepless night to take care of me carefully. She helped me took medicine and fed me gruel. After a night, I felt much more better but my mom was very tired and sleepy. I love my mother very much. I'll try my best to make her happy and always have a smile on her lips.
Vì 0 < a < b < c => 2 số nhỏ nhất là \(\overline{abc}+\overline{acb}=488\)
Đặt cột ta thấy: c + b = 18 hoặc 8
=> b + c = 8
Vì c + b = 8 ; b + c = 8 suy ra không nhớ
=> a + a = 4 => a = 2
Mà a < b < c
=> b + c = 3 + 5
=> b = 3 ; c = 5
Vậy a = 2 ; b = 3 ; c = 5
Vì 0<a<b<c nên tổng 2 số nhỏ nhất trong tập hợp A là
(abc)+(acb)=(100a+10b+c)+(100a+10c+b)
=200a+11b+11c=200a+11(b+c).
Vậy 200a+11(b+c)=488 (*)
Từ (*) =>a<3 =>a chỉ có thể là 1 hoặc 2
+Nếu a=1 =>11(b+c)=288 => vô nghiệm vì b+c=288/11 không nguyên
+Nếu a=2 =>11(b+c)=88 =>b=3; c=5 (vì a<b<c)
=>a+b+c=2+3+5 = 10
1)
a)
\(\frac{-5}{6}.\frac{120}{25}< x< \frac{-7}{15}.\frac{9}{14}\)
\(\frac{-1}{1}.\frac{20}{5}< x< \frac{-1}{5}.\frac{3}{2}\)
\(\frac{-20}{5}< x< \frac{-3}{10}\)
\(\frac{-40}{10}< x< \frac{-3}{10}\)
\(\Rightarrow Z\in\left\{-4;-5;-6;-7;-8;-9;-10;...;-39\right\}\)
Ta có: \(2015^{2016}=2015^{2000}.2015^{16}\)
Và \(2016^{2015}=2016^{2000}.2016^{15}\)
=> Ta có: \(2015^{2000}< 2016^{2000}\)
\(2015^{16}< 2016^{15}\)
Vậy \(2015^{2016}< 2016^{2015}\)
Thôi làm thế này đi:3
\(A=-\frac{2xy}{1+xy}=-\frac{2\left(1+xy\right)+2}{1+xy}=\frac{2}{1+xy}-2\)
Áp dụng BĐT Cosi ta có:
\(xy\le\frac{x^2+y^2}{2}=\frac{1}{2}\)
\(\Rightarrow A\ge\frac{2}{1+\frac{1}{2}}-2=-\frac{2}{3}\)
Dấu "=" xảy ra khi \(\Leftrightarrow x=y=\frac{\sqrt{2}}{2}\)
vậy GTNNA = \(-\frac{2}{3}\Leftrightarrow x=y=\frac{\sqrt{2}}{2}\)
\(A=-\frac{2xy}{1+xy}=-2xy-2\)
Áp dụng BĐT Cosi ta có:
\(2xy\le x^2+y^2=1\)dấu "=" xảy ra khi:
\(\Leftrightarrow\hept{\begin{cases}x^2=y^2\\x^2+y^2=1\end{cases}}\Leftrightarrow x=y=\frac{\sqrt{2}}{2}\) (thỏa mãn ĐKXĐ vs x,y > 0 )
\(\Rightarrow A\ge-1-2=-3\)
dấu "=" xảy ra khi:
\(\Leftrightarrow x=y=\frac{\sqrt{2}}{2}\)(thỏa mãn ĐKXĐ vs x,y > 0 )
vậy GTNN \(A=-3\Leftrightarrow x=y=\frac{\sqrt{2}}{2}\)
\(\left(x-1\right)\left(x+2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\)x - 1 = 0 hoặc x + 2 = 0 hoặc x - 3 = 0
<=> x = 1 hoặc x = -2 hoặc x = 3
Vậy \(x\in\left\{-2;1;3\right\}\)
bài 1:
\(3^2.\frac{1}{243}.81^3.\frac{1}{27}\)
\(=3^2.\frac{1}{3^5}.\left(3^4\right)^3.\frac{1}{3^3}\)
\(=\frac{3^2.3^{^{12}}}{3^5.3^3}=\frac{3^{2+12}}{3^{5+3}}\)
\(=\frac{3^{14}}{3^8}=3^{14-8}\)
= 36 =729
2, (x+1)3= -125
<=> (x+1)3=(-5)3
<=> x+1= -5
<=> x= -6
vậy x=-6
A B C D E H K M
a) Xét \(\Delta\)ADB và \(\Delta\)ADE có:
AD chung
\(\widehat{BAD}\) = \(\widehat{EAD}\) (AD là tia pg của \(\widehat{BAE}\))
AB = AE (gt)
=> \(\Delta\)ADB = \(\Delta\)ADE (c.g.c)
b) Vì \(\Delta\)ADB = \(\Delta\)ADE (câu a)
nên DB = DE (2 cạnh tương ứng); \(\widehat{ABD}\) = \(\widehat{AED}\) (2 góc tương ứng) hay \(\widehat{HBD}\) = \(\widehat{KED}\)
Xét \(\Delta\)HBD vuông tại H và \(\Delta\)KED vuông tại K có:
BD = ED (cm trên)
\(\widehat{HBD}\) = \(\widehat{KED}\) (cm trên)
=> \(\Delta\)HBD = \(\Delta\)KED (cạnh huyền - góc nhọn)
=> BH = EK (2 cạnh tương ứng)
c) Vì \(\Delta\)HBD = \(\Delta\)KED (câu b)
nên \(\widehat{BDH}\) = \(\widehat{EDK}\) (2 góc tương ứng) (1)
mà EM // DK nên \(\widehat{EDK}\) = DEM (2 góc so le trong) (2)
Từ (1) và (2) suy ra \(\widehat{DEM}\) = \(\widehat{BDH}\).
de